SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garousi Javad) ;pers:(Xu Tianqi)"

Sökning: WFRF:(Garousi Javad) > Xu Tianqi

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deyev, Sergey M., et al. (författare)
  • Influence of the Position and Composition of Radiometals and Radioiodine Labels on Imaging of Epcam Expression in Prostate Cancer Model Using the DARPin Ec1
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Metastasis-targeting therapy might improve outcomes in oligometastatic prostate cancer. Epithelial cell adhesion molecule (EpCAM) is overexpressed in 40-60% of prostate cancer cases and might be used as a target for specific delivery of toxins and drugs. Radionuclide molecular imaging could enable non-invasive detection of EpCAM and stratification of patients for targeted therapy. Designed ankyrin repeat proteins (DARPins) are scaffold proteins, which can be selected for specific binding to different targets. The DARPin Ec1 binds strongly to EpCAM. To determine an optimal design of Ec1-based probes, we labeled Ec1 at two different positions with four different nuclides (Ga-68, In-111, Co-57 and I-125) and investigated the impact on Ec1 biodistribution. We found that the C-terminus is the best position for labeling and that In-111 and I-125 provide the best imaging contrast. This study might be helpful for scientists developing imaging probes based on scaffold proteins. The epithelial cell adhesion molecule (EpCAM) is intensively overexpressed in 40-60% of prostate cancer (PCa) cases and can be used as a target for the delivery of drugs and toxins. The designed ankyrin repeat protein (DARPin) Ec1 has a high affinity to EpCAM (68 pM) and a small size (18 kDa). Radiolabeled Ec1 might be used as a companion diagnostic for the selection of PCa patients for therapy. The study aimed to investigate the influence of radiolabel position (N- or C-terminal) and composition on the targeting and imaging properties of Ec1. Two variants, having an N- or C-terminal cysteine, were produced, site-specifically conjugated to a DOTA chelator and labeled with cobalt-57, gallium-68 or indium-111. Site-specific radioiodination was performed using ((4-hydroxyphenyl)-ethyl)maleimide (HPEM). Biodistribution of eight radiolabeled Ec1-probes was measured in nude mice bearing PCa DU145 xenografts. In all cases, positioning of a label at the C-terminus provided the best tumor-to-organ ratios. The non-residualizing [I-125]I-HPEM label provided the highest tumor-to-muscle and tumor-to-bone ratios and is more suitable for EpCAM imaging in early-stage PCa. Among the radiometals, indium-111 provided the highest tumor-to-blood, tumor-to-lung and tumor-to-liver ratios and could be used at late-stage PCa. In conclusion, label position and composition are important for the DARPin Ec1.
  •  
2.
  • Ding, Haozhong, et al. (författare)
  • HER2-Specific Pseudomonas Exotoxin A PE25 Based Fusions : Influence of Targeting Domain on Target Binding, Toxicity, and In Vivo Biodistribution
  • 2020
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The human epidermal growth factor receptor 2 (HER2) is a clinically validated target for cancer therapy, and targeted therapies are often used in regimens for patients with a high HER2 expression level. Despite the success of current drugs, a number of patients succumb to their disease, which motivates development of novel drugs with other modes of action. We have previously shown that an albumin binding domain-derived affinity protein with specific affinity for HER2, ADAPT(6), can be used to deliver the highly cytotoxic protein domain PE25, a derivative of Pseudomonas exotoxin A, to HER2 overexpressing malignant cells, leading to potent and specific cell killing. In this study we expanded the investigation for an optimal targeting domain and constructed two fusion toxins where a HER2-binding affibody molecule, Z(HER2:2891), or the dual-HER2-binding hybrid Z(HER2:2891)-ADAPT(6) were used for cancer cell targeting. We found that both targeting domains conferred strong binding to HER2; both to the purified extracellular domain and to the HER2 overexpressing cell line SKOV3. This resulted in fusion toxins with high cytotoxic potency toward cell lines with high expression levels of HER2, with EC50 values between 10 and 100 pM. For extension of the plasma half-life, an albumin binding domain was also included. Intravenous injection of the fusion toxins into mice showed a profound influence of the targeting domain on biodistribution. Compared to previous results, with ADAPT(6) as targeting domain, Z(HER2:2891) gave rise to further extension of the plasma half-life and also shifted the clearance route of the fusion toxin from the liver to the kidneys. Collectively, the results show that the targeting domain has a major impact on uptake of PE25-based fusion toxins in different organs. The results also show that PE25-based fusion toxins with high affinity to HER2 do not necessarily increase the cytotoxicity beyond a certain point in affinity. In conclusion, Z(HER2:2891) has the most favorable characteristics as targeting domain for PE25.
  •  
3.
  • Garousi, Javad, et al. (författare)
  • Experimental HER2-Targeted Therapy Using ADAPT6-ABD-mcDM1 in Mice Bearing SKOV3 Ovarian Cancer Xenografts : Efficacy and Selection of Companion Imaging Counterpart
  • 2022
  • Ingår i: Pharmaceutics. - : MDPI. - 1999-4923. ; 14:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of the human epidermal growth factor receptor 2 (HER2) in breast and gastric cancer is exploited for targeted therapy using monoclonal antibodies and antibody-drug conjugates. Small engineered scaffold proteins, such as the albumin binding domain (ABD) derived affinity proteins (ADAPTs), are a promising new format of targeting probes for development of drug conjugates with well-defined structure and tunable pharmacokinetics. Radiolabeled ADAPT6 has shown excellent tumor-targeting properties in clinical trials. Recently, we developed a drug conjugate based on the HER2-targeting ADAPT6 fused to an albumin binding domain (ABD) for increased bioavailability and conjugated to DM1 for cytotoxic action, designated as ADAPT6-ABD-mcDM1. In this study, we investigated the therapeutic efficacy of this conjugate in mice bearing HER2-expressing SKOV3 ovarian cancer xenografts. A secondary aim was to evaluate several formats of imaging probes for visualization of HER2 expression in tumors. Administration of ADAPT6-ABD-mcDM1 provided a significant delay of tumor growth and increased the median survival of the mice, in comparison with both a non-targeting homologous construct (ADAPT(Neg)-ABD-mcDM1) and the vehicle-treated groups, without inducing toxicity to liver or kidneys. Moreover, the evaluation of imaging probes showed that small scaffold proteins, such as Tc-99m(CO)(3)-ADAPT6 or the affibody molecule Tc-99m-Z(HER2:41071), are well suited as diagnostic companions for potential stratification of patients for ADAPT6-ABD-mcDM1-based therapy.
  •  
4.
  • Garousi, Javad, et al. (författare)
  • Targeting HER2 Expressing Tumors with a Potent Drug Conjugate Based on an Albumin Binding Domain-Derived Affinity Protein
  • 2021
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 13:11, s. 1847-
  • Tidskriftsartikel (refereegranskat)abstract
    • Albumin binding domain derived affinity proteins (ADAPTs) are a class of small and folded engineered scaffold proteins that holds great promise for targeting cancer tumors. Here, we have extended the in vivo half-life of an ADAPT, targeting the human epidermal growth factor receptor 2 (HER2) by fusion with an albumin binding domain (ABD), and armed it with the highly cytotoxic payload mertansine (DM1) for an investigation of its properties in vitro and in vivo. The resulting drug conjugate, ADAPT6-ABD-mcDM1, retained binding to its intended targets, namely HER2 and serum albumins. Further, it was able to specifically bind to cells with high HER2 expression, get internalized, and showed potent toxicity, with IC50 values ranging from 5 to 80 nM. Conversely, no toxic effect was found for cells with low HER2 expression. In vivo, ADAPT6-ABD-mcDM1, radiolabeled with Tc-99m, was characterized by low uptake in most normal organs, and the main excretion route was shown to be through the kidneys. The tumor uptake was 5.5% ID/g after 24 h, which was higher than the uptake in all normal organs at this time point except for the kidneys. The uptake in the tumors was blockable by pre-injection of an excess of the monoclonal antibody trastuzumab (having an overlapping epitope on the HER2 receptor). In conclusion, half-life extended drug conjugates based on the ADAPT platform of affinity proteins holds promise for further development towards targeted cancer therapy.
  •  
5.
  • Lundmark, Fanny, et al. (författare)
  • Reduction of renal activity retention of radiolabeled albumin binding domain-derived affinity proteins using a non-residualizing label strategy compared with a cleavable glycine-leucine-glycine-lysine-linker
  • 2024
  • Ingår i: Molecular Medicine Reports. - : Spandidos Publications. - 1791-2997 .- 1791-3004. ; 29:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The feasibility of targeted imaging and therapy using radiolabeled albumin-binding domain-derived affinity proteins (ADAPTs) has been demonstrated. However, high renal uptake of radioactivity limits the maximum tolerated dose. Successful reduction of renal retention of radiolabeled Fab fragments has been demonstrated by incorporating a cleavable linker between the targeting agent and the radiometal chelator. The present study investigated if the introduction of a glycine-leucine-glycine-lysine (GLGK)-linker would reduce the kidney uptake of radiolabeled ADAPT6 and also compared it with the non-residualizing [125I]I-[(4-hydroxyphenyl)ethyl]maleimide ([125I]I-HPEM) labeling strategy. GLGK was site-specifically coupled to human epidermal growth factor receptor 2 (HER2)-targeting ADAPT6. Conjugates without the cleavable linker were used as controls and all constructs were labeled with lutetium-177 (177Lu). [125I]I-HPEM was coupled to ADAPT6 at the C-terminus. Biodistribution of all constructs was evaluated in NMRI mice 4 h after injection. Specific binding to HER2-expressing cells in vitro was demonstrated for all constructs. No significant difference in kidney uptake was observed between the [177Lu]Lu-2,2 ',2",2"'-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid-GLGK-conjugates and the controls. The renal activity of [125I]I-HPEM-ADAPT6 was significantly lower compared with all other constructs. In conclusion, the incorporation of the cleavable GLGK-linker did not result in lower renal retention. Therefore, the present study emphasized that, in order to achieve a reduction of renal retention, alternative molecular design strategies may be required for different targeting agents.
  •  
6.
  • Oroujeni, Maryam, PhD, 1982-, et al. (författare)
  • The Use of a Non-Conventional Long-Lived Gallium Radioisotope Ga-66 Improves Imaging Contrast of EGFR Expression in Malignant Tumours Using DFO-ZEGFR:2377 Affibody Molecule
  • 2021
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidermal growth factor receptor (EGFR) is overexpressed in many malignancies. EGFR-targeted therapy extends survival of patients with disseminated cancers. Radionuclide molecular imaging of EGFR expression would make EGFR-directed treatment more personalized and therefore more efficient. A previous study demonstrated that affibody molecule [Ga-68]Ga-DFO-ZEGFR:2377 permits specific positron-emission tomography (PET) imaging of EGFR expression in xenografts at 3 h after injection. We anticipated that imaging at 24 h after injection would provide higher contrast, but this is prevented by the short half-life of Ga-68 (67.6 min). Here, we therefore tested the hypothesis that the use of the non-conventional long-lived positron emitter Ga-66 (T-1/2 = 9.49 h, beta(+) = 56.5%) would permit imaging with higher contrast. Ga-66 was produced by the Zn-66(p,n)Ga-66 nuclear reaction and DFO-ZEGFR:2377 was efficiently labelled with Ga-66 with preserved binding specificity in vitro and in vivo. At 24 h after injection, [Ga-66]Ga-DFO-ZEGFR:2377 provided 3.9-fold higher tumor-to-blood ratio and 2.3-fold higher tumor-to-liver ratio than [Ga-68]Ga-DFO-ZEGFR:2377 at 3 h after injection. At the same time point, [Ga-66]Ga-DFO-ZEGFR:2377 provided 1.8-fold higher tumor-to-blood ratio, 3-fold higher tumor-to-liver ratio, 1.9-fold higher tumor-to-muscle ratio and 2.3-fold higher tumor-to-bone ratio than [Zr-89]Zr-DFO-ZEGFR:2377. Biodistribution data were confirmed by whole body PET combined with magnetic resonance imaging (PET/MRI). The use of the positron emitter Ga-66 for labelling of DFO-ZEGFR:2377 permits PET imaging of EGFR expression at 24 h after injection and improves imaging contrast.
  •  
7.
  • Vorobyeva, Anzhelika, et al. (författare)
  • Feasibility of Imaging EpCAM Expression in Ovarian Cancer Using Radiolabeled DARPin Ec1
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Epithelial cell adhesion molecule (EpCAM) is overexpressed in 55%-75% of ovarian carcinomas (OC). EpCAM might be used as a target for a treatment of disseminated OC. Designed ankyrin repeats protein (DARPin) Ec1 is a small (18 kDa) protein, which binds to EpCAM with subnanomolar affinity. We tested a hypothesis that Ec1 labeled with a non-residualizing label might serve as a companion imaging diagnostic for stratification of patients for EpCAM-targeting therapy. Ec1 was labeled with I-125 using N-succinimidyl-para-iodobenzoate. Binding affinity, specificity, and cellular processing of [I-125]I-PIB-Ec1 were evaluated using SKOV-3 and OVCAR-3 ovarian carcinoma cell lines. Biodistribution and tumor-targeting properties of [I-125]I-PIB-Ec1 were studied in Balb/c nu/nu mice bearing SKOV-3 and OVCAR-3 xenografts. EpCAM-negative Ramos lymphoma xenografts served as specificity control. Binding of [I-125]I-PIB-Ec1 to ovarian carcinoma cell lines was highly specific and had affinity in picomolar range. Slow internalization of [I-125]I-PIB-Ec1 by OC cells confirmed utility of non-residualizing label for in vivo imaging. [I-125]I-PIB-Ec1 provided 6 h after injection tumor-to-blood ratios of 30 +/- 11 and 48 +/- 12 for OVCAR-3 and SKOV-3 xenografts, respectively, and high contrast to other organs. Tumor targeting was highly specific. Saturation of tumor uptake at a high dose of Ec1 in SKOV-3 model provided a rationale for dose selection in further studies using therapeutic conjugates of Ec1 for targeted therapy. In conclusion, [I-125]I-PIB-Ec1 is a promising agent for visualizing EpCAM expression in OC.
  •  
8.
  • Vorobyeva, Anzhelika, et al. (författare)
  • Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein
  • 2020
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 25:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Albumin binding domain-Derived Affinity ProTeins (ADAPTs) are small (5 kDa) engineered scaffold proteins that are promising targeting agents for radionuclide-based imaging. A recent clinical study has demonstrated that radiolabeled ADAPTs can efficiently visualize human epidermal growth factor receptor 2 (HER2) expression in breast cancer using SPECT imaging. However, the use of ADAPTs directly labeled with radiometals for targeted radionuclide therapy is limited by their high reabsorption and prolonged retention of activity in kidneys. In this study, we investigated whether a co-injection of lysine or gelofusin, commonly used for reduction of renal uptake of radiolabeled peptides in clinics, would reduce the renal uptake of [Tc-99m]Tc(CO)(3)-ADAPT6 in NMRI mice. In order to better understand the mechanism behind the reabsorption of [Tc-99m]Tc(CO)(3)-ADAPT6, we included several compounds that act on various parts of the reabsorption system in kidneys. Administration of gelofusine, lysine, probenecid, furosemide, mannitol, or colchicine did not change the uptake of [Tc-99m]Tc(CO)(3)-ADAPT6 in kidneys. Sodium maleate reduced the uptake of [Tc-99m]Tc(CO)(3)-ADAPT6 to ca. 25% of the uptake in the control, a high dose of fructose (50 mmol/kg) reduced the uptake by ca. two-fold. However, a lower dose (20 mmol/kg) had no effect. These results indicate that common clinical strategies are not effective for reduction of kidney uptake of [Tc-99m]Tc(CO)(3)-ADAPT6 and that other strategies for reduction of activity uptake or retention in kidneys should be investigated for ADAPT6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy