SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaskell C. M.) ;srt2:(2015-2019);pers:(Groussin O.)"

Sökning: WFRF:(Gaskell C. M.) > (2015-2019) > Groussin O.

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Penasa, L., et al. (författare)
  • A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S741-S754
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide a three-dimensional model of the inner layered structure of comet 67P based on the hypothesis of an extended layering independently wrapping each lobe. A large set of terrace orientations was collected on the latest shape model and then used as a proxy for the local orientation of the surfaces of discontinuity which defines the layers. We modelled the terraces as a family of concentric ellipsoidal shells with fixed axis ratios, producing a model that is completely defined by just eight free parameters. Each lobe of 67P has been modelled independently, and the two sets of parameters have been estimated by means of non-linear optimization of the measured terrace orientations. The proposed model is able to predict the orientation of terraces, the elongation of cliffs, the linear traces observed in the Wosret and Hathor regions and the peculiar alignment of boulder-like features which has been observed in the Hapi region, which appears to be related to the inner layering of the big lobe. Our analysis allowed us to identify a plane of junction between the two lobes, further confirming the independent nature of the lobes. Our layering models differ from the best-fitting topographic ellipsoids of the surface, demonstrating that the terraces are aligned to an internal structure of discontinuities, which is unevenly exposed on the surface, suggesting a complex history of localized material removal from the nucleus.
  •  
2.
  • Auger, A. -T, et al. (författare)
  • Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since August 2014, the OSIRIS Narrow Angle Camera (NAC) onboard the Rosetta spacecraft has acquired high spatial resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko, down to the decimeter scale. This paper focuses on the Imhotep region, located on the largest lobe of the nucleus, near the equator. Aims. We map, inventory, and describe the geomorphology of the Imhotep region. We propose and discuss some processes to explain the formation and ongoing evolution of this region. Methods. We used OSIRIS NAC images, gravitational heights and slopes, and digital terrain models to map and measure the morphologies of Imhotep. Results. The Imhotep region presents a wide variety of terrains and morphologies: smooth and rocky terrains, bright areas, linear features, roundish features, and boulders. Gravity processes such as mass wasting and collapse play a significant role in the geomorphological evolution of this region. Cometary processes initiate erosion and are responsible for the formation of degassing conduits that are revealed by elevated roundish features on the surface. We also propose a scenario for the formation and evolution of the Imhotep region; this implies the presence of large primordial voids inside the nucleus, resulting from its formation process.
  •  
3.
  • Gutierrez, P. J., et al. (författare)
  • Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Data derived from the reconstruction of the nucleus shape of comet 67P/Churyumov-Gerasimenko (67P) from images of the OSIRIS camera onboard ROSETTA show evidence that the nucleus rotates in complex mode. First, the orientation of the spin axis is not fixed in an inertial reference frame, which suggests a precessing motion around the angular momentum vector with a periodicity of approximately 257 h +/- 12 h. Second, periodograms of the right ascension and declination (RA/Dec) coordinates of the body-frame Z axis show a very significant (higher than 99.99%) periodicity at 276 h +/- 12 h, different from the rotational period of 12.40 h as previously determined from light-curve analysis. Aims. The main goal is to interpret the data and associated periodicities of the spin axis orientation in space. Methods. We analyzed the spin axis orientation in space and associated periodicities and compared them with solutions of Euler equations under the assumption that the body rotates in torque-free conditions. Statistical tests comparing the observationally derived spin axis orientation with the outcome from simulations were applied to determine the most likely inertia moments, excitation level, and periods. Results. Under the assumption that the body is solid-rigid and rotates in torque-free conditions, the most likely interpretation is that 67P is spinning around the principal axis with the highest inertia moment with a period of about 13 h. At the same time, the comet precesses around the angular momentum vector with a period of about 6.35 h. While the rotating period of such a body would be about 12.4 h, RA/Dec coordinates of the spin axis would have a periodicity of about 270 h as a result of the combination of the two aforementioned motions. Conclusions. The most direct and simple interpretation of the complex rotation of 67P requires a ratio of inertia moments significantly higher than that of a homogeneous body.
  •  
4.
  • Hasselmann, P. H., et al. (författare)
  • The opposition effect of 67P/Churyumov-Gerasimenko on post-perihelion Rosetta images
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S550-S567
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution OSIRIS/Rosetta images of 67P/Churyumov-Gerasimenko acquired on the night run of 2016 April 9-10 show, at large scale, an opposition effect (OE) spot sweeping across Imhotep as the phase angle ranges from 0 degrees to 17 degrees. In this work, we fitted the phase curve of the whole surface imaged as well as three particular features using both the linear-exponential and Hapke models. These features encompass different types of spectral behaviour: a circular mesa, one venous structure and an assemblage of bright spots, going from red to blue colours. Both the Hapke and linear-exponential parameters indicate a stepwise sharpening of the OE from bright spots to circular mesa. Yet a very broad nonlinear phase curve is verified and no sign of sharp OE associated with a coherent-backscattering mechanism is observed. We estimate that the 67P surface is dominated by opaque, desiccated and larger-than-wavelength irregular grains. Veins and bright spots display photometric properties consistent with surfaces becoming slightly brighter as they are enriched by high-albedo ice grains. We also report the estimation of normal albedo for all cometary regions observed throughout the image sequence. Comparison to pre-perihelion results indicates that far better insolation of northern brighter regions, i.e. Hapi, Hathor and Seth, is sufficient to explain mismatches on the photometric parameters. However, metre-scale photometric analysis of the Imhotep-Ash boundary area advocates for mild darkening (<7 per cent) of the surface at local scale.
  •  
5.
  • Jorda, L., et al. (författare)
  • The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations
  • 2016
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 277, s. 257-278
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta spacecraft reached Comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) in August 2014 at an heliocentric distance of 3.6 a.u. and was then put in orbit around its nucleus to perform detailed observations. Among the collected data are the images acquired by the OSIRIS instrument up to the perihelion passage of the comet in August 2015, which allowed us to map the entire nucleus surface at high-resolution in the visible. Stereophotoclinometry methods have been used to reconstruct a global high-resolution shape model and to monitor its rotational parameters using data collected up to perihelion. The nucleus has a conspicuous bilobate shape with overall dimensions along its principal axes of (4.34 +/- 0.02) x (2.60 +/- 0.02) x (2.12 +/- 0.06) km. The best-fit ellipsoid dimensions of the individual lobes along their principal axes of inertia are found to be 4.10 x 3.52 x 1.63 km and 2.50 x 2.14 x 1.641cm. Their volume amounts to 66% and 27% of the total volume of the nucleus. The two lobes are connected by a "neck" whose volume has been estimated to represent similar to 7% of the total volume of the comet. Combining the derived volume of 18.8 +/- 0.3 km(3) with the mass of 9.982 +/- 0.003 x 10(12) kg determined by the Rosetta/RSI experiment, we obtained a bulk density of the nucleus of 532 +/- 7 kg m(-3). Together with the companion value of 535 35 kg m-3 deduced from the stereophotogrammetry shape model of the nucleus (Preusker et al. [2015] Astron. Astrophys. 583, A33), these constitute the first reliable and most accurate determination of the density of a cometary nucleus to date. The calculated porosity is quite large, ranging approximately from 70% to 75% depending upon the assumed density of the dust grains and the dust-to-ice mass ratio. The nature of the porosity, either micro or macro or both, remains unconstrained. The coordinates of the center of gravity are not compatible with a uniform nucleus density. The direction of the offset between the center of gravity and the center of figure suggests that the big lobe has a slightly higher bulk density compared to the small one. the center of mass position cannot be explained by different, but homogenous densities in the two lobes. The initial rotational period of 12.4041 +/- 0.0001 h of the nucleus persisted until October 2014. It then slightly increased to a maximum of 12.4304h reached on 19 May 2015 and finally dropped to 12.305 h just before perihelion on August 10, 2015. A periodogram analysis of the (RA, Dec) direction of the Z-axis of the comet obtained in parallel with the shape reconstruction exhibits a highly significant minima at 11.5 +/- 0.5 day clearly indicating an excited rotational state with an amplitude of 0.15 +/- 0.03 degrees.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy