SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaudiot G.) "

Sökning: WFRF:(Gaudiot G.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clement, E., et al. (författare)
  • Conceptual design of the AGATA 1 π array at GANIL
  • 2017
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 855, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l π array are presented.
  •  
2.
  • Edgecock, T. R., et al. (författare)
  • High intensity neutrino oscillation facilities in Europe
  • 2013
  • Ingår i: Physical Review Special Topics - Accelerators and Beams. - : American Physical Society. - 1098-4402. ; 16:2, s. 021002-
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.
  •  
3.
  • Baussan, E., et al. (författare)
  • A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac
  • 2014
  • Ingår i: Nuclear Physics B. - : Elsevier BV. - 0550-3213 .- 1873-1562. ; 885, s. 127-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spoliation Source currently under construction in Lund, Sweden, to deliver, in parallel with the spoliation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spoliation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few mu s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 sigma significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 sigma if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy