SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gautvik Kaare M.) "

Sökning: WFRF:(Gautvik Kaare M.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
2.
  • Kemp, John P, et al. (författare)
  • Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.
  • 2014
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.
  •  
3.
  • Medina-Gomez, Carolina, et al. (författare)
  • Meta-Analysis of Genome-Wide Scans for Total Body BMD in Children and Adults Reveals Allelic Heterogeneity and Age-Specific Effects at the WNT16 Locus.
  • 2012
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1×10(-11) observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ±500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6×10(-31) and an effect size explaining between 0.6%-1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42×10(-10)) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9×10(-16)) and rs7801723 (P = 8.9×10(-28)), also mapping to C7orf58 (r(2) = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.
  •  
4.
  • Nielson, Carrie M., et al. (författare)
  • Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2
  • 2016
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431. ; 31:12, s. 2085-2097
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n=15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n=21,701) and clinical vertebral fracture (n=5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF]=3%) was associated with higher vBMD (β=0.22, p=1.9×10-8) and decreased risk of radiographic vertebral fracture (odds ratio [OR]=0.75; false discovery rate [FDR] p=0.01). In 1p36.12, rs12742784 (MAF=21%) was associated with higher vBMD (β=0.09, p=1.2×10-10) and decreased risk of clinical vertebral fracture (OR=0.82; FDR p=7.4×10-4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β=0.28, FDR p=0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β=0.12, FDR p=1.7×10-3, functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence.
  •  
5.
  • Olstad, Ole K, et al. (författare)
  • Molecular heterogeneity in human osteosarcoma demonstrated by enriched mRNAs isolated by directional tag PCR subtraction cloning.
  • 2003
  • Ingår i: Anticancer research. - 0250-7005. ; 23:3B, s. 2201-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Directional tag PCR subtractive hybridization was applied to construct a cDNA library generated from three different human osteosarcoma (OS) target cell lines (OHS, SaOS-2 and KPDXM) from which normal osteoblast (NO) sequences were subtracted. After two consecutive subtractive steps more than 98% of the common mRNAs species were depleted, leading to effective enrichment of the remaining target sequences. After differential screening of 960 clones, 81 candidates were further studied by Northern blot analysis and 73 represented separate mRNA species. Fifty-three of these showed enriched mRNA levels, of which 36 represented known and 17 not previously published cDNAs or EST sequences. The mRNAs showed a 1.4- to 504-fold enrichment compared to the mRNA levels in NO cells. The known mRNAs are: Ribosomal protein S11, KSP-37, Tethering factor SEC34, FXYD6, Alpha enolase, G-s-alpha, GPR85, DAF, RPL35A, GIF, TAPA-1, ANAPC11, DCI, hsp27, MRPS7 homolog, eIF p110 subunit, DPH2L, HMG-14, FB1 protein, chondroitin-6-sulphonase, calgizzarin, RNA polymerase II subunit, RPL13A, DHS, gp96, HHP2, acidic ribosomal phosphoprotein P2, ANT-2, ARF1, AFG3L2, SKD3, phosphoglucoisomerase, GST pi, CKI gamma 2, DNA polymerase delta small subunit and TRAP delta. Sections of human osteosarcoma biopsies and a xenograft were studied by in situ analysis. Seven cDNAs highly expressed in Northern blot analysis were tested. Their in situ expression differed between the xenograft and human sections as did that of collagen I. In the xenograft made from one of the target cell lines (OHS), a fair to strong representation of 3 cloned mRNAs was observed while collagen I mRNA was not detectable. We conclude that the molecular heterogeneity of these tumors is considerable. These results ought to have implications for future work to describe phenotypic subtypes with the aim of improving the diagnosis of human osteosarcomas.
  •  
6.
  • Zheng, Jie, et al. (författare)
  • Lowering of Circulating Sclerostin May Increase Risk of Atherosclerosis and Its Risk Factors: Evidence From a Genome-Wide Association Meta-Analysis Followed by Mendelian Randomization.
  • 2023
  • Ingår i: Arthritis & rheumatology (Hoboken, N.J.). - 2326-5205. ; 75:10, s. 1781-1792
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we aimed to establish the causal effects of lowering sclerostin, target of the antiosteoporosis drug romosozumab, on atherosclerosis and its risk factors.A genome-wide association study meta-analysis was performed of circulating sclerostin levels in 33,961 European individuals. Mendelian randomization (MR) was used to predict the causal effects of sclerostin lowering on 15 atherosclerosis-related diseases and risk factors.We found that 18 conditionally independent variants were associated with circulating sclerostin. Of these, 1 cis signal in SOST and 3 trans signals in B4GALNT3, RIN3, and SERPINA1 regions showed directionally opposite signals for sclerostin levels and estimated bone mineral density. Variants with these 4 regions were selected as genetic instruments. MR using 5 correlated cis-SNPs suggested that lower sclerostin increased the risk of type 2 diabetes mellitus (DM) (odds ratio [OR] 1.32 [95% confidence interval (95% CI) 1.03-1.69]) and myocardial infarction (MI) (OR 1.35 [95% CI 1.01-1.79]); sclerostin lowering was also suggested to increase the extent of coronary artery calcification (CAC) (β = 0.24 [95% CI 0.02-0.45]). MR using both cis and trans instruments suggested that lower sclerostin increased hypertension risk (OR 1.09 [95% CI 1.04-1.15]), but otherwise had attenuated effects.This study provides genetic evidence to suggest that lower levels of sclerostin may increase the risk of hypertension, type 2 DM, MI, and the extent of CAC. Taken together, these findings underscore the requirement for strategies to mitigate potential adverse effects of romosozumab treatment on atherosclerosis and its related risk factors.
  •  
7.
  • Brødholt, Elin T., et al. (författare)
  • Bone mineral density through history : Dual-energy X-ray absorptiometry in archaeological populations of Norway
  • 2021
  • Ingår i: Journal of Archaeological Science. - : Elsevier BV. - 2352-409X .- 2352-4103. ; 36
  • Tidskriftsartikel (refereegranskat)abstract
    • Information regarding bone mineral density (BMD) and related variations through prehistoric and historic time periods in Norway is scarce. We present results of BMD measurements of 222 individuals from four rural and urban burial sites representing the medieval and post-Reformation period using osteological analysis and dualenergy X-ray absorptiometry. Existing BMD data from 137 individuals dating to the Late Iron Age and medieval period were incorporated. Young medieval females have the highest mean BMD of all time periods, including the modern female population, and significant higher mean BMD than young females from the Late Iron Age (p = 0.02; q = 0.093). Mean BMD increased significantly from the Late Iron Age to the medieval period (p = 0.0002) followed by a significant decline from the medieval to the post-Reformation period (p = 0.014). The overall results reveal significant BMD variation through prehistoric and historic time periods in Norway. The patterns of age-related bone loss observed in the archaeological record are diverse with substantial temporal changes suggesting a transition towards a modern pattern. The bone loss often exceeds that observed in the population today. This study sheds light on long-term historical trends and patterns in Norway by examining BMD variation and age-related bone loss in adult life of males and females within three archaeological time periods and compared to present populations.
  •  
8.
  • Brødholt, Elin T., et al. (författare)
  • Female skeletal health and socioeconomic status in medieval Norway (11th-16th centuries AD) : Analysis of bone mineral density and stature
  • 2023
  • Ingår i: International journal of osteoarchaeology. - : Wiley. - 1047-482X .- 1099-1212. ; 33:1, s. 83-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the possible impact of socioeconomic status on bone health in medieval Norway. We measured bone mineral density in the skeletal remains of 101 females from five medieval burial sites in Eastern Norway representing distinct socioeconomic groups by comparing results from dual-energy X-ray absorptiometry and osteological analysis. Young adult females of high status were taller than parish population females (5.3 cm, p = 0.01), although their femoral neck bone mineral density did not differ significantly between the two groups (p = 0.127). We found that the parish population females had a significantly higher occurrence of osteopenia and osteoporosis in old adulthood (p = 0.003), with an estimated disease risk of 0.53 versus 0.16 in the high-status group, possibly related to a lower attained maximum bone mineral density. We discuss environmental and genetic factors in light of relevant research literature on life in medieval Norway and offer an explanation for the significant taller stature among high-status females and the higher risk for osteopenia/osteoporosis in the parish population. This work adds to our knowledge of young adult bone mineral density and bone loss in relation to socioeconomic status in a medieval female population of Norway.
  •  
9.
  • Brødholt, Elin T., et al. (författare)
  • Social stratification reflected in bone mineral density and stature : Spectral imaging and osteoarchaeological findings from medieval Norway
  • 2022
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents skeletal material from five medieval burial sites in Eastern Norway, confined to one royal burial church, one Dominican monastery, and three burial sites representing parish populations. We combine osteological analysis and Dual Energy X-Ray Absorptiometry, studying the remains of 227 individuals (102 females and 125 males) employing young, middle, and old adult age categories. The aim is to assess bone mineral density as a skeletal indicator of socioeconomic status including stature as a variable. We detected that socioeconomic status significantly affected bone mineral density and stature. Individuals of high status had higher bone mineral density (0.07 g/cm2, p = 0.003) and taller stature (1.85 cm, p = 0.017) than individuals from the parish population. We detected no significant relationship between young adult bone mineral density and socioeconomic status (p = 0.127 and 0.059 for females and males, respectively). For males, high young adult bone mineral density and stature varied concordantly in both status groups. In contrast, females of high status were significantly taller than females in the parish population (p = 0.011). Our findings indicate quite different conditions during growth and puberty for the two groups of females. The age-related pattern of bone variation also portrayed quite different trajectories for the two socioeconomic status groups of both sexes. We discuss sociocultural practices (living conditions during childhood and puberty, as well as nutritional and lifestyle factors in adult life), possibly explaining the differences in bone mineral density between the high-status and parish population groups. The observation of greater differences in bone mineral density and stature for females than males in the medieval society of Norway is also further discussed.
  •  
10.
  • Capulli, Mattia, et al. (författare)
  • The C-Terminal Domain of Chondroadherin: A New Regulator of Osteoclast Motility Counteracting Bone Loss
  • 2014
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 29:8, s. 1833-1846
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondroadherin (CHAD) is a leucine-rich protein promoting cell attachment through binding to integrin alpha(2)beta(1) and syndecans. We observed that CHAD mRNA and protein were lower in bone biopsies of 50-year-old to 65-year-old osteoporotic women and in bone samples of ovariectomized mice versus gender/age-matched controls, suggesting a role in bone metabolism. By the means of an internal cyclic peptide (cyclicCHAD), we observed that its integrin binding sequence impaired preosteoclast migration through a nitric oxide synthase 2-dependent mechanism, decreasing osteoclastogenesis and bone resorption in a concentration-dependent fashion, whereas it had no effect on osteoblasts. Consistently, cyclicCHAD reduced transcription of two nitric oxide downstream genes, migfilin and vasp, involved in cell motility. Furthermore, the nitric oxide donor, S-nitroso-N-acetyl-D, L-penicillamine, stimulated preosteoclast migration and prevented the inhibitory effect of cyclicCHAD. Conversely, the nitric oxide synthase 2 (NOS2) inhibitor, N5-(1-iminoethyl)-l-ornithine, decreased both preosteoclast migration and differentiation, confirming a role of the nitric oxide pathway in the mechanism of action triggered by cyclicCHAD. In vivo, administration of cyclicCHAD was well tolerated and increased bone volume in healthy mice, with no adverse effect. In ovariectomized mice cyclicCHAD improved bone mass by both a preventive and a curative treatment protocol, with an effect in line with that of the bisphosphonate alendronate, that was mimicked by the NOS2 inhibitor [L-N6-(1-Iminoethyl)-lysine. 2 dihydrochloride]. In both mouse models, cyclicCHAD reduced osteoclast and bone resorption without affecting osteoblast parameters and bone formation. In conclusion, CHAD is a novel regulator of bone metabolism that, through its integrin binding domain, inhibits preosteoclast motility and bone resorption, with a potential translational impact for the treatment of osteoporosis. (C) 2014 American Society for Bone and Mineral Research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy