SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ghim Y. C.) "

Sökning: WFRF:(Ghim Y. C.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meyer, H., et al. (författare)
  • Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104008-
  • Tidskriftsartikel (refereegranskat)abstract
    • New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows.
  •  
2.
  • Chapman, I. T., et al. (författare)
  • Overview of MAST results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mega Ampere Spherical Tokamak (MAST) programme is strongly focused on addressing key physics issues in preparation for operation of ITER as well as providing solutions for DEMO design choices. In this regard, MAST has provided key results in understanding and optimizing H-mode confinement, operating with smaller edge localized modes (ELMs), predicting and handling plasma exhaust and tailoring auxiliary current drive. In all cases, the high-resolution diagnostic capability on MAST is complemented by sophisticated numerical modelling to facilitate a deeper understanding. Mitigation of ELMs with resonant magnetic perturbations (RMPs) with toroidal mode number n(RMP) = 2, 3, 4, 6 has been demonstrated: at high and low collisionality; for the first ELM following the transition to high confinement operation; during the current ramp-up; and with rotating n(RMP) = 3 RMPs. n(RMP) = 4, 6 fields cause less rotation braking whilst the power to access H-mode is less with n(RMP) = 4 than n(RMP) = 3, 6. Refuelling with gas or pellets gives plasmas with mitigated ELMs and reduced peak heat flux at the same time as achieving good confinement. A synergy exists between pellet fuelling and RMPs, since mitigated ELMs remove fewer particles. Inter-ELM instabilities observed with Doppler backscattering are consistent with gyrokinetic simulations of micro-tearing modes in the pedestal. Meanwhile, ELM precursors have been strikingly observed with beam emission spectroscopy (BES) measurements. A scan in beta at the L-H transition shows that pedestal height scales strongly with core pressure. Gyro-Bohm normalized turbulent ion heat flux (as estimated from the BES data) is observed to decrease with increasing tilt of the turbulent eddies. Fast ion redistribution by energetic particle modes depends on density, and access to a quiescent domain with 'classical' fast ion transport is found above a critical density. Highly efficient electron Bernstein wave current drive (1 A W-1) has been achieved in solenoid-free start-up. A new proton detector has characterized escaping fusion products. Langmuir probes and a high-speed camera suggest filaments play a role in particle transport in the private flux region whilst coherence imaging has measured scrape-off layer (SOL) flows. BOUT++ simulations show that fluxes due to filaments are strongly dependent on resistivity and magnetic geometry of the SOL, with higher radial fluxes at higher resistivity. Finally, MAST Upgrade is due to begin operation in 2016 to support ITER preparation and importantly to operate with a Super-X divertor to test extended leg concepts for particle and power exhaust.
  •  
3.
  • Kirk, A., et al. (författare)
  • Overview of recent physics results from MAST
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp-up, models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge, detailed studies have revealed how filament characteristics are responsible for determining the near and far scrape off layer density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during edge localized modes (ELMs) and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n > 1 has been shown to be important for plasma performance.
  •  
4.
  • Harrison, J.R., et al. (författare)
  • Overview of new MAST physics in anticipation of first results from MAST Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The mega amp spherical tokamak (MAST) was a low aspect ratio device (R/a = 0.85/0.65 ∼ 1.3) with similar poloidal cross-section to other medium-size tokamaks. The physics programme concentrates on addressing key physics issues for the operation of ITER, design of DEMO and future spherical tokamaks by utilising high resolution diagnostic measurements closely coupled with theory and modelling to significantly advance our understanding. An empirical scaling of the energy confinement time that favours higher power, lower collisionality devices is consistent with gyrokinetic modelling of electron scale turbulence. Measurements of ion scale turbulence with beam emission spectroscopy and gyrokinetic modelling in up-down symmetric plasmas find that the symmetry of the turbulence is broken by flow shear. Near the non-linear stability threshold, flow shear tilts the density fluctuation correlation function and skews the fluctuation amplitude distribution. Results from fast particle physics studies include the observation that sawteeth are found to redistribute passing and trapped fast particles injected from neutral beam injectors in equal measure, suggesting that resonances between the m = 1 perturbation and the fast ion orbits may be playing a dominant role in the fast ion transport. Measured D-D fusion products from a neutron camera and a charged fusion product detector are 40% lower than predictions from TRANSP/NUBEAM, highlighting possible deficiencies in the guiding centre approximation. Modelling of fast ion losses in the presence of resonant magnetic perturbations (RMPs) can reproduce trends observed in experiments when the plasma response and charge-exchange losses are accounted for. Measurements with a neutral particle analyser during merging-compression start-up indicate the acceleration of ions and electrons. Transport at the plasma edge has been improved through reciprocating probe measurements that have characterised a geodesic acoustic mode at the edge of an ohmic L-mode plasma and particle-in-cell modelling has improved the interpretation of plasma potential estimates from ball-pen probes. The application of RMPs leads to a reduction in particle confinement in L-mode and H-mode and an increase in the core ionization source. The ejection of secondary filaments following type-I ELMs correlates with interactions with surfaces near the X-point. Simulations of the interaction between pairs of filaments in the scrape-off layer suggest this results in modest changes to their velocity, and in most cases can be treated as moving independently. A stochastic model of scrape-off layer profile formation based on the superposition of non-interacting filaments is in good agreement with measured time-average profiles. Transport in the divertor has been improved through fast camera imaging, indicating the presence of a quiescent region devoid of filament near the X-point, extending from the separatrix to ψ n ∼ 1.02. Simulations of turbulent transport in the divertor show that the angle between the divertor leg on the curvature vector strongly influences transport into the private flux region via the interchange mechanism. Coherence imaging measurements show counter-streaming flows of impurities due to gas puffing increasing the pressure on field lines where the gas is ionised. MAST Upgrade is based on the original MAST device, with substantially improved capabilities to operate with a Super-X divertor to test extended divertor leg concepts. SOLPS-ITER modelling predicts the detachment threshold will be reduced by more than a factor of 2, in terms of upstream density, in the Super-X compared with a conventional configuration and that the radiation front movement is passively stabilised before it reaches the X-point. 1D fluid modelling reveals the key role of momentum and power loss mechanisms in governing detachment onset and evolution. Analytic modelling indicates that long legs placed at large major radius, or equivalently low at the target compared with the X-point are more amenable to external control. With MAST Upgrade experiments expected in 2019, a thorough characterisation of the sources of the intrinsic error field has been carried out and a mitigation strategy developed.
  •  
5.
  • Kwak, Sehyun, et al. (författare)
  • Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system
  • 2016
  • Ingår i: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 87:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy