SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gieroba A) "

Sökning: WFRF:(Gieroba A)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Dabrowski, W, et al. (författare)
  • Decompressive Craniectomy Improves QTc Interval in Traumatic Brain Injury Patients
  • 2020
  • Ingår i: International journal of environmental research and public health. - : MDPI AG. - 1660-4601. ; 17:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Traumatic brain injury (TBI) is commonly associated with cardiac dysfunction, which may be reflected by abnormal electrocardiograms (ECG) and/or contractility. TBI-related cardiac disorders depend on the type of cerebral injury, the region of brain damage and the severity of the intracranial hypertension. Decompressive craniectomy (DC) is commonly used to reduce intra-cranial hypertension (ICH). Although DC decreases ICH rapidly, its effect on ECG has not been systematically studied. The aim of this study was to analyze the changes in ECG in patients undergoing DC. Methods: Adult patients without previously known cardiac diseases treated for isolated TBI with DC were studied. ECG variables, such as: spatial QRS-T angle (spQRS-T), corrected QT interval (QTc), QRS and T axes (QRSax and Tax, respectively), STJ segment and the index of cardio-electrophysiological balance (iCEB) were analyzed before DC and at 12–24 h after DC. Changes in ECG were analyzed according to the occurrence of cardiac arrhythmias and 28-day mortality. Results: 48 patients (17 female and 31 male) aged 18–64 were studied. Intra-cranial pressure correlated with QTc before DC (p < 0.01, r = 0.49). DC reduced spQRS-T (p < 0.001) and QTc interval (p < 0.01), increased Tax (p < 0.01) and changed STJ in a majority of leads but did not affect QRSax and iCEB. The iCEB was relatively increased before DC in patients who eventually experienced cardiac arrhythmias after DC (p < 0.05). Higher post-DC iCEB was also noted in non-survivors (p < 0.05), although iCEB values were notably heart rate-dependent. Conclusions: ICP positively correlates with QTc interval in patients with isolated TBI, and DC for relief of ICH reduces QTc and spQRS-T. However, DC might also increase risk for life-threatening cardiac arrhythmias, especially in ICH patients with notably prolonged QTc before and increased iCEB after DC.
  •  
3.
  • Dabrowski, W, et al. (författare)
  • Plasma Hyperosmolality Prolongs QTc Interval and Increases Risk for Atrial Fibrillation in Traumatic Brain Injury Patients
  • 2020
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Hyperosmotic therapy with mannitol is frequently used for treatment cerebral edema, and 320 mOsm/kg H2O has been recommended as a high limit for therapeutic plasma osmolality. However, plasma hyperosmolality may impair cardiac function, increasing the risk of cardiac events. The aim of this study was to analyze the relation between changes in plasma osmolality and electrocardiographic variables and cardiac arrhythmia in patients treated for isolated traumatic brain injury (iTBI). Methods: Adult iTBI patients requiring mannitol infusion following cerebral edema, and with a Glasgow Coma Score below 8, were included. Plasma osmolality was measured with Osmometr 800 CLG. Spatial QRS-T angle (spQRS-T), corrected QT interval (QTc) and STJ segment were calculated from digital resting 12-lead ECGs and analyzed in relation to four levels of plasma osmolality: (A) <280 mOsm/kg H2O; (B) 280–295 mOsm/kg H2O; (C) 295–310 mOsm/kg H2O; and (D) >310 mOsm/kg H2O. All parameters were measured during five consecutive days of treatment. Results: 94 patients aged 18-64 were studied. Increased plasma osmolality correlated with prolonged QTc (p < 0.001), intensified disorders in STJ and increased the risk for cardiac arrhythmia. Moreover, plasma osmolality >313 mOms/kg H2O significantly increased the risk of QTc prolongation >500 ms. Conclusion: In patients treated for iTBI, excessively increased plasma osmolality contributes to electrocardiographic disorders including prolonged QTc, while also correlating with increased risk for cardiac arrhythmias.
  •  
4.
  •  
5.
  • Dabrowski, W, et al. (författare)
  • Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury
  • 2021
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 10:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Disorders in electroencephalography (EEG) are commonly noted in patients with traumatic brain injury (TBI) and may be associated with electrocardiographic disturbances. Electrographic seizures (ESz) are the most common features in these patients. This study aimed to explore the relationship between ESz and possible changes in QTc interval and spatial QRS-T angle both during ESz and after ESz resolution. Methods: Adult patients with TBI were studied. Surface 12-lead ECGs were recorded using a Cardiax device during ESz events and 15 min after their effective suppression using barbiturate infusion. The ESz events were diagnosed using Masimo Root or bispectral index (BIS) devices. Results: Of the 348 patients considered for possible inclusion, ESz were noted in 72, with ECG being recorded in 21. Prolonged QTc was noted during ESz but significantly ameliorated after ESz suppression (540.19 ± 60.68 ms vs. 478.67 ± 38.52 ms, p < 0.001). The spatial QRS-T angle was comparable during ESz and after treatment. Regional cerebral oximetry increased following ESz suppression (from 58.4% ± 6.2 to 60.5% ± 4.2 (p < 0.01) and from 58.2% ± 7.2 to 60.8% ± 4.8 (p < 0.05) in the left and right hemispheres, respectively). Conclusion: QTc interval prolongation occurs during ESz events in TBI patients but both it and regional cerebral oximetry are improved after suppression of seizures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy