SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giles Graham G.) ;srt2:(2015-2019);srt2:(2017);pers:(Southey Melissa C.)"

Sökning: WFRF:(Giles Graham G.) > (2015-2019) > (2017) > Southey Melissa C.

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bernatsky, Sasha, et al. (författare)
  • Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma
  • 2017
  • Ingår i: Lupus Science and Medicine. - : BMJ. - 2053-8790. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL. Methods: GWAS data on European Caucasians from the International Lymphoma Epidemiology Consortium (InterLymph) provided a total of 3857 DLBCL cases and 7666 general-population controls. Data were pooled in a random-effects meta-analysis. Results: Among the 28 SLE-related SNPs investigated, the two most convincingly associated with risk of DLBCL included the CD40 SLE risk allele rs4810485 on chromosome 20q13 (OR per risk allele=1.09, 95% CI 1.02 to 1.16, p=0.0134), and the HLA SLE risk allele rs1270942 on chromosome 6p21.33 (OR per risk allele=1.17, 95% CI 1.01 to 1.36, p=0.0362). Of additional possible interest were rs2205960 and rs12537284. The rs2205960 SNP, related to a cytokine of the tumour necrosis factor superfamily TNFSF4, was associated with an OR per risk allele of 1.07, 95% CI 1.00 to 1.16, p=0.0549. The OR for the rs12537284 (chromosome 7q32, IRF5 gene) risk allele was 1.08, 95% CI 0.99 to 1.18, p=0.0765. Conclusions: These data suggest several plausible genetic links between DLBCL and SLE.
  •  
2.
  • Baglietto, Laura, et al. (författare)
  • DNA methylation changes measured in pre-diagnostic peripheral blood samples are associated with smoking and lung cancer risk
  • 2017
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 140:1, s. 50-61
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation changes are associated with cigarette smoking. We used the Illumina Infinium HumanMethylation450 array to determine whether methylation in DNA from pre-diagnostic, peripheral blood samples is associated with lung cancer risk. We used a case-control study nested within the EPIC-Italy cohort and a study within the MCCS cohort as discovery sets (a total of 552 case-control pairs). We validated the top signals in 429 case-control pairs from another 3 studies. We identified six CpGs for which hypomethylation was associated with lung cancer risk: cg05575921 in the AHRR gene (p-valuepooled  = 4 × 10(-17) ), cg03636183 in the F2RL3 gene (p-valuepooled  = 2 × 10 (- 13) ), cg21566642 and cg05951221 in 2q37.1 (p-valuepooled  = 7 × 10(-16) and 1 × 10(-11) respectively), cg06126421 in 6p21.33 (p-valuepooled  = 2 × 10(-15) ) and cg23387569 in 12q14.1 (p-valuepooled  = 5 × 10(-7) ). For cg05951221 and cg23387569 the strength of association was virtually identical in never and current smokers. For all these CpGs except for cg23387569, the methylation levels were different across smoking categories in controls (p-valuesheterogeneity  ≤ 1.8 x10 (- 7) ), were lowest for current smokers and increased with time since quitting for former smokers. We observed a gain in discrimination between cases and controls measured by the area under the ROC curve of at least 8% (p-values ≥ 0.003) in former smokers by adding methylation at the 6 CpGs into risk prediction models including smoking status and number of pack-years. Our findings provide convincing evidence that smoking and possibly other factors lead to DNA methylation changes measurable in peripheral blood that may improve prediction of lung cancer risk.
  •  
3.
  • Jayasekara, Harindra, et al. (författare)
  • Lifetime alcohol intake is associated with an increased risk of KRAS plus and BRAF-/KRAS- but not BRAF plus colorectal cancer
  • 2017
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 140:7, s. 1485-1493
  • Tidskriftsartikel (refereegranskat)abstract
    • Ethanol in alcoholic beverages is a causative agent for colorectal cancer. Colorectal cancer is a biologically heterogeneous disease, and molecular subtypes defined by the presence of somatic mutations in BRAF and KRAS are known to exist. We examined associations between lifetime alcohol intake and molecular and anatomic subtypes of colorectal cancer. We calculated usual alcohol intake for 10-year periods from age 20 using recalled frequency and quantity of beverage-specific consumption for 38,149 participants aged 40-69 years from the Melbourne Collaborative Cohort Study. Cox regression was performed to derive hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between lifetime alcohol intake and colorectal cancer risk. Heterogeneity in the HRs across subtypes of colorectal cancer was assessed. A positive dose-dependent association between lifetime alcohol intake and overall colorectal cancer risk (mean follow-up=14.6 years; n=596 colon and n=326 rectal cancer) was observed (HR=1.08, 95% CI: 1.04-1.12 per 10 g/day increment). The risk was greater for rectal than colon cancer (p(homogeneity)=0.02). Alcohol intake was associated with increased risks of KRAS+ (HR=1.07, 95% CI: 1.00-1.15) and BRAF-/KRAS- (HR=1.05, 95% CI: 1.00-1.11) but not BRAF+ tumors (HR=0.89, 95% CI: 0.78-1.01; p(homogeneity)=0.01). Alcohol intake is associated with an increased risk of KRAS+ and BRAF-/KRAS- tumors originating via specific molecular pathways including the traditional adenoma-carcinoma pathway but not with BRAF+ tumors originating via the serrated pathway. Therefore, limiting alcohol intake from a young age might reduce colorectal cancer originating via the traditional adenoma-carcinoma pathway.
  •  
4.
  • Jiao, Xiang, et al. (författare)
  • PHIP - a novel candidate breast cancer susceptibility locus on 6q14.1
  • 2017
  • Ingår i: Oncotarget. - : IMPACT JOURNALS LLC. - 1949-2553. ; 8:61, s. 102769-102782
  • Tidskriftsartikel (refereegranskat)abstract
    • Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD > 2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.
  •  
5.
  • Lophatananon, Artitaya, et al. (författare)
  • Height, selected genetic markers and prostate cancer risk : results from the PRACTICAL consortium.
  • 2017
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 117:5, s. 734-743
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer.METHODS: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions.RESULTS: The results suggest that height is associated with high-grade prostate cancer risk. Men with height >180 cm are at a 22% increased risk as compared to men with height <173 cm (OR 1.22, 95% CI 1.01-1.48). Genetic variants in the growth pathway gene showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as compared to lowest score group.CONCLUSIONS: There was no evidence of gene-environment interaction between height and the selected candidate SNPs.Our findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy