SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Giles Graham G.) srt2:(2015-2019);srt2:(2018);hsvcat:1"

Search: WFRF:(Giles Graham G.) > (2015-2019) > (2018) > Natural sciences

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Breuillard, H., et al. (author)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Journal article (peer-reviewed)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
2.
  • Webster, J. M., et al. (author)
  • Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:6, s. 4858-4878
  • Journal article (peer-reviewed)abstract
    • We use high-resolution data from dayside passes of the Magnetospheric Multiscale (MMS) mission to create for the first time a comprehensive listing of encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversals, and j.E' > 0. We present an overview of these 32 EDR or near-EDR events, which demonstrate a wide variety of observed plasma behavior inside and surrounding the reconnection site. We analyze in detail three of the 21 new EDR encounters, which occurred within a 1-min-long interval on 23 November 2016. The three events, which resulted from a relatively low and oscillating magnetopause velocity, exhibited large electric fields (up to similar to 100 mV/m), crescent-shaped electron velocity phase space densities, large currents (>= 2 mu A/m(2)), and Ohmic heating of the plasma (similar to 10 nW/m(3)). We include an Ohm's law analysis, in which we show that the divergence of the electron pressure term usually dominates the nonideal terms and is much more turbulent on the magnetosphere versus the magnetosheath side of the EDR.
  •  
3.
  • Zhou, M., et al. (author)
  • Magnetospheric Multiscale Observations of an Ion Diffusion Region With Large Guide Field at the Magnetopause : Current System, Electron Heating, and Plasma Waves
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:3, s. 1834-1852
  • Journal article (peer-reviewed)abstract
    • We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E-|| with amplitudes up to 20mV/m. The other type was not associated with any structures in E-||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E-||. There was a perpendicular super-Alfvenic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvenic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view