SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Giovannucci Edward) ;mspu:(article);pers:(Ma Jing)"

Search: WFRF:(Giovannucci Edward) > Journal article > Ma Jing

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wang, Zhaoming, et al. (author)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
2.
  • Ahn, Jiyoung, et al. (author)
  • Quantitative trait loci predicting circulating sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium (BPC3).
  • 2009
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 18:19, s. 3749-57
  • Journal article (peer-reviewed)abstract
    • Twin studies suggest a heritable component to circulating sex steroid hormones and sex hormone-binding globulin (SHBG). In the NCI-Breast and Prostate Cancer Cohort Consortium, 874 SNPs in 37 candidate genes in the sex steroid hormone pathway were examined in relation to circulating levels of SHBG (N = 4720), testosterone (N = 4678), 3 alpha-androstanediol-glucuronide (N = 4767) and 17beta-estradiol (N = 2014) in Caucasian men. rs1799941 in SHBG is highly significantly associated with circulating levels of SHBG (P = 4.52 x 10(-21)), consistent with previous studies, and testosterone (P = 7.54 x 10(-15)), with mean difference of 26.9 and 14.3%, respectively, comparing wild-type to homozygous variant carriers. Further noteworthy novel findings were observed between SNPs in ESR1 with testosterone levels (rs722208, mean difference = 8.8%, P = 7.37 x 10(-6)) and SRD5A2 with 3 alpha-androstanediol-glucuronide (rs2208532, mean difference = 11.8%, P = 1.82 x 10(-6)). Genetic variation in genes in the sex steroid hormone pathway is associated with differences in circulating SHBG and sex steroid hormones.
  •  
3.
  • Cao, Yin, et al. (author)
  • Insulin-like growth factor pathway genetic polymorphisms, circulating IGF1 and IGFBP3, and prostate cancer survival
  • 2014
  • In: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 106:5
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The insulin-like growth factor (IGF) signaling pathway has been implicated in prostate cancer (PCa) initiation, but its role in progression remains unknown.METHODS: Among 5887 PCa patients (704 PCa deaths) of European ancestry from seven cohorts in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium, we conducted Cox kernel machine pathway analysis to evaluate whether 530 tagging single nucleotide polymorphisms (SNPs) in 26 IGF pathway-related genes were collectively associated with PCa mortality. We also conducted SNP-specific analysis using stratified Cox models adjusting for multiple testing. In 2424 patients (313 PCa deaths), we evaluated the association of prediagnostic circulating IGF1 and IGFBP3 levels and PCa mortality. All statistical tests were two-sided.RESULTS: The IGF signaling pathway was associated with PCa mortality (P = .03), and IGF2-AS and SSTR2 were the main contributors (both P = .04). In SNP-specific analysis, 36 SNPs were associated with PCa mortality with P-trend less than .05, but only three SNPs in the IGF2-AS remained statistically significant after gene-based corrections. Two were in linkage disequilibrium (r(2) = 1 for rs1004446 and rs3741211), whereas the third, rs4366464, was independent (r(2) = 0.03). The hazard ratios (HRs) per each additional risk allele were 1.19 (95% confidence interval [CI] = 1.06 to 1.34; P-trend = .003) for rs3741211 and 1.44 (95% CI = 1.20 to 1.73; P-trend < .001) for rs4366464. rs4366464 remained statistically significant after correction for all SNPs (P-trend.corr = .04). Prediagnostic IGF1 (HRhighest (vs lowest quartile) = 0.71; 95% CI = 0.48 to 1.04) and IGFBP3 (HR = 0.93; 95% Cl = 0.65 to 1.34) levels were not associated with PCa mortality.CONCLUSIONS: The IGF signaling pathway, primarily IGF2-AS and SSTR2 genes, may be important in PCa survival.
  •  
4.
  •  
5.
  • Dossus, Laure, et al. (author)
  • PTGS2 and IL6 genetic variation and risk of breast and prostate cancer : results from the Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2010
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 31:3, s. 455-461
  • Journal article (peer-reviewed)abstract
    • Genes involved in the inflammation pathway have been associated with cancer risk. Genetic variants in the interleukin-6 (IL6) and prostaglandin-endoperoxide synthase-2 (PTGS2, encoding for the COX-2 enzyme) genes, in particular, have been related to several cancer types, including breast and prostate cancers. We conducted a study within the Breast and Prostate Cancer Cohort Consortium to examine the association between IL6 and PTGS2 polymorphisms and breast and prostate cancer risk. Twenty-seven polymorphisms, selected by pairwise tagging, were genotyped on 6292 breast cancer cases and 8135 matched controls and 8008 prostate cancer cases and 8604 matched controls. The large sample sizes and comprehensive single nucleotide polymorphism tagging in this study gave us excellent power to detect modest effects for common variants. After adjustment for multiple testing, none of the associations examined remained statistically significant at P = 0.01. In analyses not adjusted for multiple testing, one IL6 polymorphism (rs6949149) was marginally associated with breast cancer risk (TT versus GG, odds ratios (OR): 1.32; 99% confidence intervals (CI): 1.00-1.74, P(trend) = 0.003) and two were marginally associated with prostate cancer risk (rs6969502-AA versus rs6969502-GG, OR: 0.87, 99% CI: 0.75-1.02; P(trend) = 0.002 and rs7805828-AA versus rs7805828-GG, OR: 1.11, 99% CI: 0.99-1.26; P(trend) = 0.007). An increase in breast cancer risk was observed for the PTGS2 polymorphism rs7550380 (TT versus GG, OR: 1.38, 99% CI: 1.04-1.83). No association was observed between PTGS2 polymorphisms and prostate cancer risk. In conclusion, common genetic variation in these two genes might play at best a limited role in breast and prostate cancers.
  •  
6.
  • Fang, Fang, et al. (author)
  • Prediagnostic plasma vitamin D metabolites and mortality among patients with prostate cancer
  • 2011
  • In: PLOS ONE. - San Fransisco, USA : Public Library Science. - 1932-6203. ; 6:4
  • Journal article (peer-reviewed)abstract
    • Background: Laboratory evidence suggests that vitamin D might influence prostate cancer prognosis.Methodology/principal findings: We examined the associations between prediagnostic plasma levels of 25(OH)vitamin D [25(OH)D] and 1,25(OH)(2) vitamin D [1,25(OH)(2)D] and mortality among 1822 participants of the Health Professionals Follow-up Study and Physicians' Health Study who were diagnosed with prostate cancer. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) of total mortality (n = 595) and lethal prostate cancer (death from prostate cancer or development of bone metastases; n = 202). In models adjusted for age at diagnosis, BMI, physical activity, and smoking, we observed a HR of 1.22 (95% CI: 0.97, 1.54) for total mortality, comparing men in the lowest to the highest quartile of 25(OH)D. There was no association between 1,25(OH)(2)D and total mortality. Men with the lowest 25(OH)D quartile were more likely to die of their cancer (HR: 1.59; 95% CI: 1.06, 2.39) compared to those in the highest quartile (P(trend) = 0.006). This association was largely explained by the association between low 25(OH)D levels and advanced cancer stage and higher Gleason score, suggesting that these variables may mediate the influence of 25(OH)D on prognosis. The association also tended to be stronger among patients with samples collected within five years of cancer diagnosis. 1,25(OH)(2)D levels were not associated with lethal prostate cancer.Conclusions/significance: Although potential bias of less advanced disease due to more screening activity among men with high 25(OH)D levels cannot be ruled out, higher prediagnostic plasma 25(OH)D might be associated with improved prostate cancer prognosis.
  •  
7.
  • Fiorentino, Michelangelo, et al. (author)
  • Immunohistochemical Expression of BRCA1 and Lethal Prostate Cancer
  • 2010
  • In: Cancer Research. - Philadelphia, USA : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 70:8, s. 3136-3139
  • Journal article (peer-reviewed)abstract
    • BRCA1 functions as a tumor suppressor; recent work suggests that BRCA1 may also induce cell cycle arrest to allow for DNA repair. We hypothesized that BRCA1 expression in prostate tumor tissue may be associated with prostate cancer progression through regulation of the cell cycle. We used immunohistochemistry to evaluate BRCA1 protein expression in archival tumor samples from 393 prostate cancer cases in the Physicians' Health Study. The men were followed prospectively from diagnosis to development of metastases and mortality. Fifteen percent of tumors stained positive for BRCA1. BRCA1-positive tumors had substantially increased tumor proliferation index compared with negative tumors (47.0 Ki67-positive nuclei versus 10.3, P = 0.0016) and were more likely to develop lethal cancer compared with BRCA1-negative tumors (hazard ratio, 4.6; 95% confidence interval, 2.4-8.7). These findings strengthen the hypothesis that BRCA1 plays a role in cell cycle control and show that BRCA1 is a marker of clinical prostate cancer prognosis. Cancer Res; 70(8); 3136-9. (C) 2010 AACR.
  •  
8.
  • Gu, Fangyi, et al. (author)
  • Eighteen insulin-like growth factor pathway genes, circulating levels of IGF-I and its binding protein, and risk of prostate and breast cancer
  • 2010
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2877-2887
  • Journal article (peer-reviewed)abstract
    • Background: Circulating levels of insulin-like growth factor I (IGF-I) and its main binding protein, IGF binding protein 3 (IGFBP-3), have been associated with risk of several types of cancer. Heritable factors explain up to 60% of the variation in IGF-I and IGFBP-3 in studies of adult twins.Methods: We systematically examined common genetic variation in 18 genes in the IGF signaling pathway for associations with circulating levels of IGF-I and IGFBP-3. A total of 302 single nucleotide polymorphisms (SNP) were genotyped in >5,500 Caucasian men and 5,500 Caucasian women from the Breast and Prostate Cancer Cohort Consortium.Results: After adjusting for multiple testing, SNPs in the IGF1 and SSTR5 genes were significantly associated with circulating IGF-I (P < 2.1 × 10−4); SNPs in the IGFBP3 and IGFALS genes were significantly associated with circulating IGFBP-3. Multi-SNP models explained R2 = 0.62% of the variation in circulating IGF-I and 3.9% of the variation in circulating IGFBP-3. We saw no significant association between these multi-SNP predictors of circulating IGF-I or IGFBP-3 and risk of prostate or breast cancers.Conclusion: Common genetic variation in the IGF1 and SSTR5 genes seems to influence circulating IGF-I levels, and variation in IGFBP3 and IGFALS seems to influence circulating IGFBP-3. However, these variants explain only a small percentage of the variation in circulating IGF-I and IGFBP-3 in Caucasian men and women.Impact: Further studies are needed to explore contributions from other genetic factors such as rare variants in these genes and variation outside of these genes.
  •  
9.
  • Lindstroem, Sara, et al. (author)
  • Common genetic variants in prostate cancer risk prediction-results from the NCI breast and prostate cancer cohort consortium (BPC3)
  • 2012
  • In: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755. ; 21:3, s. 437-444
  • Journal article (peer-reviewed)abstract
    • Background: One of the goals of personalized medicine is to generate individual risk profiles that could identify individuals in the population that exhibit high risk. The discovery of more than two-dozen independent single-nucleotide polymorphism markers in prostate cancer has raised the possibility for such risk stratification. In this study, we evaluated the discriminative and predictive ability for prostate cancer risk models incorporating 25 common prostate cancer genetic markers, family history of prostate cancer, and age.Methods: We fit a series of risk models and estimated their performance in 7,509 prostate cancer cases and 7,652 controls within the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). We also calculated absolute risks based on SEER incidence data.Results: The best risk model (C-statistic = 0.642) included individual genetic markers and family history of prostate cancer. We observed a decreasing trend in discriminative ability with advancing age (P = 0.009), with highest accuracy in men younger than 60 years (C-statistic = 0.679). The absolute ten-year risk for 50-year-old men with a family history ranged from 1.6% (10th percentile of genetic risk) to 6.7% (90th percentile of genetic risk). For men without family history, the risk ranged from 0.8% (10th percentile) to 3.4% (90th percentile).Conclusions: Our results indicate that incorporating genetic information and family history in prostate cancer risk models can be particularly useful for identifying younger men that might benefit from prostate-specific antigen screening.Impact: Although adding genetic risk markers improves model performance, the clinical utility of these genetic risk models is limited.
  •  
10.
  • Lindstroem, Sara, et al. (author)
  • Replication of five prostate cancer loci identified in an Asian population-results from the NCI breast and prostate cancer cohort consortium (BPC3)
  • 2012
  • In: Cancer Epidemiology, Biomarkers and Prevention. - Philadelphia : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 21:1, s. 212-216
  • Journal article (peer-reviewed)abstract
    • Background: A recent genome-wide association study (GWAS) of prostate cancer in a Japanese population identified five novel regions not previously discovered in other ethnicities. In this study, we attempt to replicate these five loci in a series of nested prostate cancer case-control studies of European ancestry. Methods: We genotyped five single-nucleotide polymorphism (SNP): rs13385191 (chromosome 2p24), rs12653946 (5p15), rs1983891 (6p21), rs339331 (6p22), and rs9600079 (13q22), in 7,956 prostate cancer cases and 8,148 controls from a series of nested case-control studies within the National cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). We tested each SNP for association with prostate cancer risk and assessed whether associations differed with respect to disease severity and age of onset. Results: Four SNPs (rs13385191, rs12653946, rs1983891, and rs339331) were significantly associated with prostate cancer risk (P values ranging from 0.01 to 1.1 x 10(-5)). Allele frequencies and ORs were overall lower in our population of European descent than in the discovery Asian population. SNP rs13385191 (C2orf43) was only associated with low-stage disease (P = 0.009, case-only test). No other SNP showed association with disease severity or age of onset. We did not replicate the 13q22 SNP, rs9600079 (P = 0.62). Conclusions: Four SNPs associated with prostate cancer risk in an Asian population are also associated with prostate cancer risk in men of European descent. Impact: This study illustrates the importance of evaluation of prostate cancer risk markers across ethnic groups. Cancer Epidemiol Biomarkers Prev; 21(1); 212-16. (C) 2011 AACR.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view