SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gisselsson Nord David) ;pers:(Holmquist Mengelbier Linda)"

Sökning: WFRF:(Gisselsson Nord David) > Holmquist Mengelbier Linda

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gisselsson Nord, David, et al. (författare)
  • Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis.
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 107:47, s. 20489-20493
  • Tidskriftsartikel (refereegranskat)abstract
    • One extra chromosome copy (i.e., trisomy) is the most common type of chromosome aberration in cancer cells. The mechanisms behind the generation of trisomies in tumor cells are largely unknown, although it has been suggested that dysfunction of the spindle assembly checkpoint (SAC) leads to an accumulation of trisomies through failure to correctly segregate sister chromatids in successive cell divisions. By using Wilms tumor as a model for cancers with trisomies, we now show that trisomic cells can form even in the presence of a functional SAC through tripolar cell divisions in which sister chromatid separation proceeds in a regular fashion, but cytokinesis failure nevertheless leads to an asymmetrical segregation of chromosomes into two daughter cells. A model for the generation of trisomies by such asymmetrical cell division accurately predicted several features of clones having extra chromosomes in vivo, including the ratio between trisomies and tetrasomies and the observation that different trisomies found in the same tumor occupy identical proportions of cells and colocalize in tumor tissue. Our findings provide an experimentally validated model explaining how multiple trisomies can occur in tumor cells that still maintain accurate sister chromatid separation at metaphase-anaphase transition and thereby physiologically satisfy the SAC.
  •  
2.
  • Gisselsson Nord, David, et al. (författare)
  • Genetic bottlenecks and the hazardous game of population reduction in cell line based research.
  • 2010
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 1090-2422 .- 0014-4827. ; 316, s. 3379-3386
  • Tidskriftsartikel (refereegranskat)abstract
    • Established tumour cell lines are ubiquitous tools in research, but their representativity is often debated. One possible caveat is that many cell lines are derived from cells with genomic instability, potentially leading to genotype changes in vitro. We applied SNP-array analysis to an established tumour cell line (WiT49). Even though WiT49 exhibited chromosome segregation errors in 30% of cell divisions, only a single chromosome segment exhibited a shift in copy number after 20 population doublings in culture. In contrast, sub-populations derived from single cells expanded for an equal number of population doublings showed on average 5.8 and 8.9 altered segments compared to the original culture and to each other, respectively. Most copy number variants differentiating these single cell clones corresponded to pre-existing variations in the original culture. Furthermore, no sub-clonal variation was detected in any of the populations derived from single cells. This indicates that genetic bottlenecks resulting from population reduction poses a higher threat to genetic representativity than prolonged culture per se, even in cell lines with a high rate of genomic instability. Genetic bottlenecks should therefore be considered a potential caveat in all studies involving sub-cloning, transfection and other conditions leading to a temporary reduction in cell number.
  •  
3.
  • Holmquist Mengelbier, Linda, et al. (författare)
  • Deletions of 16q in Wilms Tumors Localize to Blastemal-Anaplastic Cells and Are Associated with Reduced Expression of the IRXB Renal Tubulogenesis Gene Cluster.
  • 2010
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 177:5, s. 2609-2621
  • Tidskriftsartikel (refereegranskat)abstract
    • Wilms tumor is the most common pediatric renal neoplasm, but few molecular prognostic markers have been identified for this tumor. Somatic deletion in the long arm of chromosome 16 (16q) is known to predict a less favorable outcome in Wilms tumor, but the underlying molecular mechanisms are not known. We show that 16q deletions are typically confined to immature anaplastic-blastic tumor elements, while deletions are absent in maturing tumor components. The smallest region of deletion overlap mapped to a 1.8-Mb segment containing the IRXB gene cluster including IRX3, IRX5, and IRX6, of which IRX3 is a recently identified regulator of tubular maturation during nephrogenesis. Tumors with 16q deletion showed a lower overall mRNA expression of IRXB genes, and 16q-deleted tumor cells failed to express IRX3 while it was expressed in differentiating tubular tumor elements with intact 16q. Consistent with a role for IRX3 in tubular differentiation, gene sets linked to Notch signaling, Rho signaling, and ion channel activity were enriched in tumors with high IRX3 expression, while WTs with low expression were enriched for gene sets linked to cell cycle progression. Low mRNA levels of IRXB genes were associated with diffuse anaplasia, high-stage disease, and death. A disturbed balance between tubular differentiation and self-renewal of anaplastic-blastic elements may thus be one mechanism linking 16q deletion to adverse outcome in Wilms tumor.
  •  
4.
  • Holmquist Mengelbier, Linda, et al. (författare)
  • Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer.
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic differences among neoplastic cells within the same tumour have been proposed to drive cancer progression and treatment failure. Whether data on intratumoral diversity can be used to predict clinical outcome remains unclear. We here address this issue by quantifying genetic intratumoral diversity in a set of chemotherapy-treated childhood tumours. By analysis of multiple tumour samples from seven patients we demonstrate intratumoral diversity in all patients analysed after chemotherapy, typically presenting as multiple clones within a single millimetre-sized tumour sample (microdiversity). We show that microdiversity often acts as the foundation for further genome evolution in metastases. In addition, we find that microdiversity predicts poor cancer-specific survival (60%; P=0.009), independent of other risk factors, in a cohort of 44 patients with chemotherapy-treated childhood kidney cancer. Survival was 100% for patients lacking microdiversity. Thus, intratumoral genetic diversity is common in childhood cancers after chemotherapy and may be an important factor behind treatment failure.
  •  
5.
  • Forslund, Ola, et al. (författare)
  • Regarding human cytomegalovirus in neuroblastoma.
  • 2014
  • Ingår i: Cancer Medicine. - : Wiley. - 2045-7634. ; 3:4, s. 1038-1040
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Wolmer-Solberg et al., reported that six human neuroblastoma cell lines and the vast majority of clinical neuroblastoma samples contained HCMV DNA and expressed HCMV proteins. We could not replicate the data and therefore remain skeptical towards the prevalence of HCMV DNA in neuroblastomas.
  •  
6.
  •  
7.
  • Karlsson, Jenny, et al. (författare)
  • Aberrant epigenetic regulation in clear cell sarcoma of the kidney featuring distinct DNA hypermethylation and EZH2 overexpression.
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:10, s. 36-11127
  • Tidskriftsartikel (refereegranskat)abstract
    • The global methylation profile and the mutational status of 633 specific epigenetic regulators were analyzed in the pediatric tumor clear cell sarcoma of the kidney (CCSK). Methylation array analyses of 30 CCSKs revealed CCSK tumor DNA to be globally hypermethylated compared to Wilms tumor, normal fetal kidney, and adult kidney. The aberrant methylation pattern of CCSKs was associated with activation of genes involved in embryonic processes and with silencing of genes linked to normal kidney function. No epigenetic regulator was recurrently mutated in our cohort, but a mutation in the key epigenetic regulator EZH2 was discovered in one case. EZH2 mRNA was significantly higher in CCSK compared to Wilms tumor and normal kidney, and the EZH2 protein was strongly expressed in more than 90 % of CCSK tumor cells in 9/9 tumors analyzed. This was in striking contrast to the lack of EZH2 protein expression in Wilms tumor stromal elements, indicating that EZH2 could be explored further as a diagnostic marker and a potential drug target for CCSK.
  •  
8.
  • Karlsson, Jenny, et al. (författare)
  • Activation of human telomerase reverse transcriptase through gene fusion in clear cell sarcoma of the kidney.
  • 2015
  • Ingår i: Cancer Letters. - : Elsevier BV. - 1872-7980 .- 0304-3835. ; 357:2, s. 498-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Clear cell sarcoma of the kidney (CCSK) is a rare tumor type affecting infants and young children. Most CCSKs display few genomic aberrations, and no general underlying mechanism for tumor initiation has yet been identified, although a YWHAE-NUTM2B/NUTM2E fusion gene has been observed in a minority of cases. We performed RNA-sequencing of 22 CCSKs to investigate the presence of additional fusion transcripts. The presence of the YWHAE-NUTM2B/NUTM2E fusion was confirmed in two cases. In addition, a novel IRX2-TERT fusion transcript was identified in one case. SNP-array analyses revealed the underlying event to be an interstitial deletion in the short arm of chromosome 5 (5p15.33). TERT was dramatically upregulated under the influence of the IRX2 promoter. In line with TERT expression being driven by active IRX2 regulatory elements, we found a high expression of IRX2 in CCSKs irrespective of fusion gene status. IRX2 was also expressed in human fetal kidney - the presumed tissue of origin for CCSK. We conclude that in addition to promoter mutations and epigenetic events, TERT can also be activated in tumors via formation of fusion transcripts.
  •  
9.
  • Karlsson, Jenny, et al. (författare)
  • Clear cell sarcoma of the kidney demonstrates an embryonic signature indicative of a primitive nephrogenic origin.
  • 2014
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 53:5, s. 381-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Clear cell sarcoma of the kidney (CCSK) is a tumor affecting children with a median age of 3 years at diagnosis. The cell of origin of CCSK is unknown and data on the molecular changes giving rise to CCSK is scarce. This has hindered the identification of positive diagnostic markers and development of molecularly targeted treatment protocols for CCSK. We have characterized a panel of CCSK to gain information regarding its molecular profile and possible origin. High-resolution genomic analysis with single nucleotide polymorphism array of 37 tumors did not reveal any clues to the mechanisms behind tumor development as remarkably few genetic imbalances were found. Gene expression analysis revealed a highly characteristic gene signature, enriched for pathways involved in embryonic development, including kidney formation. The presence of markers for two different developmental lineages in the embryonic kidney was therefore investigated in the tumor cells. FOXD1 which identifies cells giving rise to stromal elements, and CITED1, a marker for cells primed for nephrogenic epithelial differentiation, were both highly expressed in CCSK. In addition, the early embryonic marker OSR1 was expressed at higher levels in CCSK than in Wilms tumor, normal fetal kidney or adult kidney. As this marker discriminates the intermediate mesoderm from other mesodermal structures, our study could suggest that CCSK arises from a mesodermal cell type that retains the capacity to initiate differentiation towards both nephrons and stroma, but remains locked in a primitive state. © 2014 Wiley Periodicals, Inc.
  •  
10.
  • Karlsson, Jenny, et al. (författare)
  • High-resolution genomic profiling of an adult Wilms' tumor: evidence for a pathogenesis distinct from corresponding pediatric tumors.
  • 2011
  • Ingår i: Virchows Archiv: an international journal of pathology. - : Springer Science and Business Media LLC. - 1432-2307. ; 459, s. 547-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Wilms' tumor (WT), the most common kidney tumor among children, is characterized by a triphasic morphology consisting of blastemal, epithelial, and stromal components. Adult WT is a rare malignancy displaying similar histological features. We here present the first published high-resolution genomic analysis of a mixed-type adult WT. This revealed a more pronounced genetic complexity than usually observed in children with mixed-type WT. The majority of chromosomes displayed uniparental disomies, and microdeletions were present in genes with known importance for tumor formation (LRP1B, FHIT, and WWOX) or organogenesis (NEGR1 and ZFPM2), abnormalities not previously reported for pediatric WT. Our results indicate that adult WT is a biological entity distinct from the corresponding pediatric tumor type.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy