SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gisselsson Nord David) ;pers:(Karlsson Jenny)"

Sökning: WFRF:(Gisselsson Nord David) > Karlsson Jenny

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Natalie, et al. (författare)
  • Inactivation of RB1, CDKN2A and TP53 have distinct effects on genomic stability at side-by-side comparison in karyotypically normal cells
  • 2023
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 62:2, s. 93-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal instability is a common feature in malignant tumors. Previous studies have indicated that inactivation of the classical tumor suppressor genes RB1, CDKN2A and TP53 may contribute to chromosomal aberrations in cancer by disrupting different aspects of the cell cycle and DNA damage checkpoint machinery. We performed a side-by-side comparison of how inactivation of each of these genes affected chromosomal stability in vitro. Using CRISPR-Cas9 technology, RB1, CDKN2A and TP53 were independently knocked out in karyotypically normal immortalized cells, after which these cells were followed over time. Bulk RNA sequencing revealed a distinct phenotype with upregulation of pathways related to cell cycle control and proliferation in all three knockouts. Surprisingly, the RB1 and CDKN2A knocked out cell lines did not harbor more copy number aberrations than wild-type cells, despite culturing for months. The TP53-knocked out cells, in contrast, showed a massive amount of copy number alterations and saltatory evolution through whole genome duplication. This side-by-side comparison indicated that the effects on chromosomal stability from inactivation of RB1 and CDKN2A are negligible compared to inactivation of TP53, under the same conditions in a non-stressful environment, even though partly overlapping regulatory pathways are affected.
  •  
2.
  • Holmquist Mengelbier, Linda, et al. (författare)
  • Deletions of 16q in Wilms Tumors Localize to Blastemal-Anaplastic Cells and Are Associated with Reduced Expression of the IRXB Renal Tubulogenesis Gene Cluster.
  • 2010
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 177:5, s. 2609-2621
  • Tidskriftsartikel (refereegranskat)abstract
    • Wilms tumor is the most common pediatric renal neoplasm, but few molecular prognostic markers have been identified for this tumor. Somatic deletion in the long arm of chromosome 16 (16q) is known to predict a less favorable outcome in Wilms tumor, but the underlying molecular mechanisms are not known. We show that 16q deletions are typically confined to immature anaplastic-blastic tumor elements, while deletions are absent in maturing tumor components. The smallest region of deletion overlap mapped to a 1.8-Mb segment containing the IRXB gene cluster including IRX3, IRX5, and IRX6, of which IRX3 is a recently identified regulator of tubular maturation during nephrogenesis. Tumors with 16q deletion showed a lower overall mRNA expression of IRXB genes, and 16q-deleted tumor cells failed to express IRX3 while it was expressed in differentiating tubular tumor elements with intact 16q. Consistent with a role for IRX3 in tubular differentiation, gene sets linked to Notch signaling, Rho signaling, and ion channel activity were enriched in tumors with high IRX3 expression, while WTs with low expression were enriched for gene sets linked to cell cycle progression. Low mRNA levels of IRXB genes were associated with diffuse anaplasia, high-stage disease, and death. A disturbed balance between tubular differentiation and self-renewal of anaplastic-blastic elements may thus be one mechanism linking 16q deletion to adverse outcome in Wilms tumor.
  •  
3.
  • Holmquist Mengelbier, Linda, et al. (författare)
  • Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer.
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic differences among neoplastic cells within the same tumour have been proposed to drive cancer progression and treatment failure. Whether data on intratumoral diversity can be used to predict clinical outcome remains unclear. We here address this issue by quantifying genetic intratumoral diversity in a set of chemotherapy-treated childhood tumours. By analysis of multiple tumour samples from seven patients we demonstrate intratumoral diversity in all patients analysed after chemotherapy, typically presenting as multiple clones within a single millimetre-sized tumour sample (microdiversity). We show that microdiversity often acts as the foundation for further genome evolution in metastases. In addition, we find that microdiversity predicts poor cancer-specific survival (60%; P=0.009), independent of other risk factors, in a cohort of 44 patients with chemotherapy-treated childhood kidney cancer. Survival was 100% for patients lacking microdiversity. Thus, intratumoral genetic diversity is common in childhood cancers after chemotherapy and may be an important factor behind treatment failure.
  •  
4.
  • Andersson, Natalie, et al. (författare)
  • DEVOLUTION—A method for phylogenetic reconstruction of aneuploid cancers based on multiregional genotyping data
  • 2021
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Phylogenetic reconstruction of cancer cell populations remains challenging. There is a particular lack of tools that deconvolve clones based on copy number aberration analyses of multiple tumor biopsies separated in time and space from the same patient. This has hampered investigations of tumors rich in aneuploidy but few point mutations, as in many childhood cancers and high-risk adult cancer. Here, we present DEVOLUTION, an algorithm for subclonal deconvolution followed by phylogenetic reconstruction from bulk genotyping data. It integrates copy number and sequencing information across multiple tumor regions throughout the inference process, provided that the mutated clone fraction for each mutation is known. We validate DEVOLUTION on data from 56 pediatric tumors comprising 253 tumor biopsies and show a robust performance on simulations of bulk genotyping data. We also benchmark DEVOLUTION to similar bioinformatic tools using an external dataset. DEVOLUTION holds the potential to facilitate insights into the development, progression, and response to treatment, particularly in tumors with high burden of chromosomal copy number alterations.
  •  
5.
  • Karlsson, Jenny, et al. (författare)
  • Aberrant epigenetic regulation in clear cell sarcoma of the kidney featuring distinct DNA hypermethylation and EZH2 overexpression.
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:10, s. 36-11127
  • Tidskriftsartikel (refereegranskat)abstract
    • The global methylation profile and the mutational status of 633 specific epigenetic regulators were analyzed in the pediatric tumor clear cell sarcoma of the kidney (CCSK). Methylation array analyses of 30 CCSKs revealed CCSK tumor DNA to be globally hypermethylated compared to Wilms tumor, normal fetal kidney, and adult kidney. The aberrant methylation pattern of CCSKs was associated with activation of genes involved in embryonic processes and with silencing of genes linked to normal kidney function. No epigenetic regulator was recurrently mutated in our cohort, but a mutation in the key epigenetic regulator EZH2 was discovered in one case. EZH2 mRNA was significantly higher in CCSK compared to Wilms tumor and normal kidney, and the EZH2 protein was strongly expressed in more than 90 % of CCSK tumor cells in 9/9 tumors analyzed. This was in striking contrast to the lack of EZH2 protein expression in Wilms tumor stromal elements, indicating that EZH2 could be explored further as a diagnostic marker and a potential drug target for CCSK.
  •  
6.
  • Karlsson, Jenny, et al. (författare)
  • Activation of human telomerase reverse transcriptase through gene fusion in clear cell sarcoma of the kidney.
  • 2015
  • Ingår i: Cancer Letters. - : Elsevier BV. - 1872-7980 .- 0304-3835. ; 357:2, s. 498-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Clear cell sarcoma of the kidney (CCSK) is a rare tumor type affecting infants and young children. Most CCSKs display few genomic aberrations, and no general underlying mechanism for tumor initiation has yet been identified, although a YWHAE-NUTM2B/NUTM2E fusion gene has been observed in a minority of cases. We performed RNA-sequencing of 22 CCSKs to investigate the presence of additional fusion transcripts. The presence of the YWHAE-NUTM2B/NUTM2E fusion was confirmed in two cases. In addition, a novel IRX2-TERT fusion transcript was identified in one case. SNP-array analyses revealed the underlying event to be an interstitial deletion in the short arm of chromosome 5 (5p15.33). TERT was dramatically upregulated under the influence of the IRX2 promoter. In line with TERT expression being driven by active IRX2 regulatory elements, we found a high expression of IRX2 in CCSKs irrespective of fusion gene status. IRX2 was also expressed in human fetal kidney - the presumed tissue of origin for CCSK. We conclude that in addition to promoter mutations and epigenetic events, TERT can also be activated in tumors via formation of fusion transcripts.
  •  
7.
  • Karlsson, Jenny, et al. (författare)
  • BCOR internal tandem duplication and YWHAE-NUTM2B/E fusion are mutually exclusive events in clear cell sarcoma of the kidney.
  • 2016
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 55:2, s. 120-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Clear cell sarcoma of the kidney (CCSK) is the second most common pediatric renal tumor. Two recurrent genetic aberrations have been described in CCSK. One is a fusion of YWHAE and NUTM2B/E, the other is an internal tandem duplication (ITD) in the BCOR gene. Here it is shown that YWHAE-NUTM2B/E fusion and the BCOR ITD are mutually exclusive events and activated different downstream signaling systems. This has important diagnostic implications and opens up for further mechanistic studies of CCSK pathogenesis. © 2015 Wiley Periodicals, Inc.
  •  
8.
  • Karlsson, Jenny, et al. (författare)
  • Clear cell sarcoma of the kidney demonstrates an embryonic signature indicative of a primitive nephrogenic origin.
  • 2014
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 53:5, s. 381-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Clear cell sarcoma of the kidney (CCSK) is a tumor affecting children with a median age of 3 years at diagnosis. The cell of origin of CCSK is unknown and data on the molecular changes giving rise to CCSK is scarce. This has hindered the identification of positive diagnostic markers and development of molecularly targeted treatment protocols for CCSK. We have characterized a panel of CCSK to gain information regarding its molecular profile and possible origin. High-resolution genomic analysis with single nucleotide polymorphism array of 37 tumors did not reveal any clues to the mechanisms behind tumor development as remarkably few genetic imbalances were found. Gene expression analysis revealed a highly characteristic gene signature, enriched for pathways involved in embryonic development, including kidney formation. The presence of markers for two different developmental lineages in the embryonic kidney was therefore investigated in the tumor cells. FOXD1 which identifies cells giving rise to stromal elements, and CITED1, a marker for cells primed for nephrogenic epithelial differentiation, were both highly expressed in CCSK. In addition, the early embryonic marker OSR1 was expressed at higher levels in CCSK than in Wilms tumor, normal fetal kidney or adult kidney. As this marker discriminates the intermediate mesoderm from other mesodermal structures, our study could suggest that CCSK arises from a mesodermal cell type that retains the capacity to initiate differentiation towards both nephrons and stroma, but remains locked in a primitive state. © 2014 Wiley Periodicals, Inc.
  •  
9.
  • Karlsson, Jenny, et al. (författare)
  • High-resolution genomic profiling of an adult Wilms' tumor: evidence for a pathogenesis distinct from corresponding pediatric tumors.
  • 2011
  • Ingår i: Virchows Archiv: an international journal of pathology. - : Springer Science and Business Media LLC. - 1432-2307. ; 459, s. 547-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Wilms' tumor (WT), the most common kidney tumor among children, is characterized by a triphasic morphology consisting of blastemal, epithelial, and stromal components. Adult WT is a rare malignancy displaying similar histological features. We here present the first published high-resolution genomic analysis of a mixed-type adult WT. This revealed a more pronounced genetic complexity than usually observed in children with mixed-type WT. The majority of chromosomes displayed uniparental disomies, and microdeletions were present in genes with known importance for tumor formation (LRP1B, FHIT, and WWOX) or organogenesis (NEGR1 and ZFPM2), abnormalities not previously reported for pediatric WT. Our results indicate that adult WT is a biological entity distinct from the corresponding pediatric tumor type.
  •  
10.
  • O'Meara, Elaine, et al. (författare)
  • Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney
  • 2012
  • Ingår i: Journal of Pathology. - : Wiley. - 0022-3417. ; 227:1, s. 72-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Clear cell sarcoma of kidney (CCSK) is classified as a tumour of unfavourable histology by the National Wilms' Tumor Study Group. It has worse clinical outcomes than Wilms' tumour. Virtually nothing is known about CCSK biology, as there have been very few genetic aberrations identified to act as pointers in this cancer. Three cases of CCSK bearing a chromosomal translocation, t(10;17)(q22;p13), have been individually reported but not further investigated to date. The aim of this research was to characterize t(10;17)(q22;p13) in CCSK to identify the genes involved in the translocation breakpoints. Using fluorescently labelled bacterial artificial chromosomes (BACs) and a chromosome-walking strategy on an index case of CCSK with t(10;17)(q22;p13) by karyotype, we identified the chromosomal breakpoints on 17p13.3 and 10q22.3. The translocation results in rearrangement of YWHAE on chromosome 17 and FAM22 on chromosome 10, producing an in-frame fusion transcript of similar to 3 kb, incorporating exons 15 of YWHAE and exons 2-7 of FAM22, as determined by RT-PCR using YWHAE- and FAM22-specific primers. The YWHAE-FAM22 transcript was detected in six of 50 further CCSKs tested, therefore showing an overall incidence of 12% in our cohort. No transcript-positive cases presented with stage I disease, despite this being the stage for 31% of our cohort. Tumour cellularity was significantly higher in the cases that were transcript-positive. Based on the chromosome 10 breakpoint identified by FISH and the sequences of the full-length transcripts obtained, the FAM22 members involved in the translocation in these CCSK cases include FAM22B and FAM22E. Elucidation of the role of YWHAE-FAM22 in CCSK will assist development of more efficient and targeted therapies for this childhood cancer, which currently has poor outcomes. Copyright (c) 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy