SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gjörloff Wingren Anette) ;hsvcat:1"

Sökning: WFRF:(Gjörloff Wingren Anette) > Naturvetenskap

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mölder, Anna, et al. (författare)
  • Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography
  • 2008
  • Ingår i: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 232:2, s. 240-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Manual cell counting is time consuming and requires a high degree of skill on behalf of the person performing the count. Here we use a technique that utilizes digital holography, allowing label-free and completely non-invasive cell counting directly in cell culture vessels with adherent viable cells. The images produced can provide both quantitative and qualitative phase information from a single hologram. The recently constructed microscope HolomonitorTM (Phase Holographic Imaging AB, Lund, Sweden) combines the commonly used phase contrast microscope with digital holography, the latter giving us the possibility of achieving quantitative information on cellular shape, area, confluence and optical thickness. This project aimed at determining the accuracy and repeatability of cell counting measurements using digital holography compared to the conventional manual cell counting method using a haemocytometer. The collected datawere also used to determine cell size and cellular optical thickness.Theresults showthat digital holography can be used for non-invasive automatic cell counting as precisely as conventional manual cell counting
  •  
2.
  • Beyer, Sarah, 1982-, et al. (författare)
  • Fluorescent Molecularly Imprinted Polymer Layers against Sialic Acid on Silica-Coated Polystyrene Cores — Assessment of the Binding Behavior to Cancer Cells
  • 2022
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 14:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Sialic acid (SA) is a monosaccharide usually linked to the terminus of glycan chains on the cell surface. It plays a crucial role in many biological processes, and hypersialylation is a common feature in cancer. Lectins are widely used to analyze the cell surface expression of SA. However, these protein molecules are usually expensive and easily denatured, which calls for the development of alternative glycan-specific receptors and cell imaging technologies. In this study, SA-imprinted fluorescent core-shell molecularly imprinted polymer particles (SA-MIPs) were employed to recognize SA on the cell surface of cancer cell lines. The SA-MIPs improved suspensibility and scattering properties compared with previously used core-shell SA-MIPs. Although SA-imprinting was performed using SA without preference for the α2,3-and α2,6-SA forms, we screened the cancer cell lines analyzed using the lectins Maackia Amurensis Lectin I (MAL I, α2,3-SA) and Sambucus Nigra Lectin (SNA, α2,6-SA). Our results show that the selected cancer cell lines in this study presented a varied binding behavior with the SA-MIPs. The binding pattern of the lectins was also demonstrated. Moreover, two different pentavalent SA conjugates were used to inhibit the binding of the SA-MIPs to breast, skin, and lung cancer cell lines, demonstrating the specificity of the SA-MIPs in both flow cytometry and confocal fluorescence microscopy. We concluded that the synthesized SA-MIPs might be a powerful future tool in the diagnostic analysis of various cancer cells.
  •  
3.
  • Cabaleiro-Lago, Celia, et al. (författare)
  • Recent Advances in Molecularly Imprinted Polymers and Their Disease-Related Applications
  • 2023
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 15:21, s. 4199-4199
  • Forskningsöversikt (refereegranskat)abstract
    • Molecularly imprinted polymers (MIPs) and the imprinting technique provide polymeric material with recognition elements similar to natural antibodies. The template of choice (i.e., the antigen) can be almost any type of smaller or larger molecule, protein, or even tissue. There are various formats of MIPs developed for different medical purposes, such as targeting, imaging, assay diagnostics, and biomarker detection. Biologically applied MIPs are widely used and currently developed for medical applications, and targeting the antigen with MIPs can also help in personalized medicine. The synthetic recognition sites of the MIPs can be tailor-made to function as analytics, diagnostics, and drug delivery systems. This review will cover the promising clinical applications of different MIP systems recently developed for disease diagnosis and treatment.
  •  
4.
  • El-Schich, Zahra, et al. (författare)
  • Sialic acid as a biomarker studied in breast cancer cell lines in vitro using fluorescent molecularly imprinted polymers
  • 2021
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Sialylations are post-translational modifications of proteins and lipids that play important roles in many cellular events, including cell-cell interactions, proliferation, and migration. Tumor cells express high levels of sialic acid (SA), which are often associated with the increased invasive potential in clinical tumors, correlating with poor prognosis. To overcome the lack of natural SA-receptors, such as antibodies and lectins with high enough specificity and sensitivity, we have used molecularly imprinted polymers (MIPs), or “plastic antibodies”, as nanoprobes. Because high expression of epithelial cell adhesion molecule (EpCAM) in primary tumors is often associated with proliferation and a more aggressive phenotype, the expression of EpCAM and CD44 was initially analyzed. The SA-MIPs were used for the detection of SA on the cell surface of breast cancer cells. Lectins that specifically bind to the a-2,3 SA and a-2,6 SA variants were used for analysis of SA expression, with both flow cytometry and confocal microscopy. Here we show a correlation of EpCAM and SA expression when using the SA-MIPs for detection of SA. We also demonstrate the binding pattern of the SA-MIPs on the breast cancer cell lines using confocal microscopy. Pre-incubation of the SA-MIPs with SA-derivatives as inhibitors could reduce the binding of the SA-MIPs to the tumor cells, indicating the specificity of the SA-MIPs. In conclusion, the SA-MIPs may be a new powerful tool in the diagnostic analysis of breast cancer cells.
  •  
5.
  • Feith, Marek, et al. (författare)
  • Quantitative Phase Dynamics of Cancer Cell Populations Affected by Blue Light
  • 2020
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 10:7, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased exposition to blue light may induce many changes in cell behavior and significantly affect the critical characteristics of cells. Here we show that multimodal holographic microscopy (MHM) within advanced image analysis is capable of correctly distinguishing between changes in cell motility, cell dry mass, cell density, and cell death induced by blue light. We focused on the effect of blue light with a wavelength of 485 nm on morphological and dynamical parameters of four cell lines, malignant PC-3, A2780, G361 cell lines, and the benign PNT1A cell line. We used MHM with blue light doses 24 mJ/cm(2), 208 mJ/cm(2) and two kinds of expositions (500 and 1000 ms) to acquire real-time quantitative phase information about cellular parameters. It has been shown that specific doses of the blue light significantly influence cell motility, cell dry mass and cell density. These changes were often specific for the malignant status of tested cells. Blue light dose 208 mJ/cm(2) x 1000 ms affected malignant cell motility but did not change the motility of benign cell line PNT1A. This light dose also significantly decreased proliferation activity in all tested cell lines but was not so deleterious for benign cell line PNT1A as for malignant cells. Light dose 208 mJ/cm(2) x 1000 ms oppositely affected cell mass in A2780 and PC-3 cells and induced different types of cell death in A2780 and G361 cell lines. Cells obtained the least damage on lower doses of light with shorter time of exposition.
  •  
6.
  • Hasterok, Sylwia, et al. (författare)
  • CD81 (Cluster of Differentiation 81)
  • 2020
  • Ingår i: Atlas of Genetics and Cytogenetics in Oncology and Haematology. - : Atlas of genetics and cytogenetics in oncology and haematology. - 1768-3262. ; :7
  • Forskningsöversikt (refereegranskat)abstract
    • Cluster of differentiation (CD81) is a type of protein, which is encoded by CD81 gene. Beside that CD81 is also known under other names such as Target of the Antiproliferative Antibody 1 (TAPA-1) and Tetraspanin-28 (TSPAN28). Location of CD81 is known to be on chromosome 11 (11p15.5), where it contains 15-20 bases in length. It is expressed mostly in cells of testis, ovary, endometrium, placenta, bone marrow, smooth muscles and others. The main function of the CD81 protein is to mediate signal transduction events, which are important for cells' development, activation, growth and motility. The CD81 gene is also known as a candidate for many malignancies because of its location. The characteristic feature of CD81 is that it is highly hydrophobic and contains a short N- and C-terminal cytoplasmic domains together with cytoplasmic cysteines, potential sites of palmitoylation as well as four transmembrane domains where they together hold the protein in a cell membrane. There are two CD81 isoforms, isoform 1 and isoform 2. Isoforms of CD81 are usually found in a tumor-suppressor region where they have a great impact on tumor development. There has always been a high interest in research on CD81 function in viral disease development. In fact, it is known that CD81 contributes in the development of diseases such as hepatitis C, malaria and various types of cancer. Since the complete effect of CD81 is unknown, further research and scientific methodology could potentially discover all possible functions and mechanisms regulated by the CD81 protein in human body.
  •  
7.
  • Kimani, Martha, et al. (författare)
  • Imprinted Particles for Direct Fluorescence Detection of Sialic Acid in Polar Media and on Cancer Cells with Enhanced Control of Nonspecific Binding
  • 2021
  • Ingår i: ACS APPLIED POLYMER MATERIALS. - : American Chemical Society (ACS). - 2637-6105. ; 3:5, s. 2363-2373
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycoproteins are abundant on the cell surface of mammals, providing structural support, modulating cell membrane properties, and acting as signaling agents. Variation of glycosylation patterns has been found to indicate various disease states, including cell malignancy. Sialic acid (SA) is present as a terminating group on cell-surface glycans, and its overexpression has been linked to several types of cancer. Detection of SA on the cell surface is therefore critical for detection of cancer in its early stages. In this work, a fluorescent molecularly imprinted polymer layer targeting SA was synthesized on the surface of silica-coated polystyrene (PS) particles. Compared to previous works, a PS core supplies a lighter, lower-density support for improved suspension stability and scattering properties. Moreover, their smaller size provides a higher surface-area-to-volume ratio for binding. The incorporation of a fluorescent monomer in the MIP shell allowed for simple and rapid determination of binding specificity in polar media due to a deprotonation-reprotonation interaction mechanism between the fluorescent monomer and SA, which led to spectral changes. Upon titration of the MIP particles with SA in suspension, an increase in fluorescence emission of the particles was observed, with the MIP particles binding SA more selectively compared to the nonimprinted polymer (NIP) control particles. In cell staining experiments performed by flow cytometry, the binding behavior of the MIP particles compared favorably with that of SA-binding lectins. NIPs prepared with a "dummy" template served as a better negative control in cell binding assays due to the favorable inward orientation of template-binding functional groups in the polymer shell, which reduced nonspecific binding. The results show that fluorescent MIPs targeting SA are a promising tool for in vitro fluorescence staining of cancerous cells and for future diagnosis of cancer at early stages.
  •  
8.
  • Miftakhova, Regina, et al. (författare)
  • Cyclin A1 regulates the interactions between mouse haematopoietic stem and progenitor cells and their niches
  • 2015
  • Ingår i: Cell Cycle. - : Taylor & Francis. - 1538-4101 .- 1551-4005. ; 14:12, s. 1948-1960
  • Tidskriftsartikel (refereegranskat)abstract
    • It remains poorly understood how the haematopoietic stem/progenitor cells (HSPC) are attracted to their niches and the functional consequences of such interaction. In the present study, we show that the cell cycle regulator cyclin A1 in association with vascular endothelial growth factor receptor 1 (VEGFR1), is required for HSPC and their niches to maintain their function and proper interaction. In the absence of cyclin A1, the HSPC in the BM are increased in their frequency and display an increased migratory and homing ability. Concomitantly, the ability of the endosteal and central BM niche zones to attract and home the wild-type HSPC is significantly reduced in cyclin A1-null mice as compared to the wild-type controls. The impaired proliferation and homing of HSPC in the BM of cyclin A1-null mice are attributed to the increased density of microvessels in the endosteal and central BM niche zones, which is associated with the increased VEGFR1 expression. Thus, modulation of cyclin A1 and VEGFR1 in HSPC and their niches may provide new insights into therapeutic approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy