SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gnirke Andreas) "

Sökning: WFRF:(Gnirke Andreas)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Richards, Stephen, et al. (författare)
  • The genome of the model beetle and pest Tribolium castaneum.
  • 2008
  • Ingår i: Nature. - 1476-4687. ; 452:7190, s. 949-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Tribolium castaneum is a representative of earth’s most numerous eukaryotic order, a powerful model organism for the study of generalized insect development, and also an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved an ability to interact with a diverse chemical environment as evidenced by large expansions in odorant and gustatory receptors, as well as p450 and other detoxification enzymes. Developmental patterns in Tribolium are more representative of other arthropods than those found in Drosophila, a fact represented in gene content and function. For one, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, and some are expressed in the growth zone crucial for axial elongation in short germ development. Systemic RNAi in T. castaneum appears to use mechanisms distinct from those found in C. elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
  •  
2.
  • Amemiya, Chris T., et al. (författare)
  • The African coelacanth genome provides insights into tetrapod evolution
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 496:7445, s. 311-316
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.
  •  
3.
  • Grabherr, Manfred G, et al. (författare)
  • Full-length transcriptome assembly from RNA-Seq data without a reference genome
  • 2011
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 29:7, s. 644-652
  • Tidskriftsartikel (refereegranskat)abstract
    • Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the absence of a reference genome.
  •  
4.
  • Kirby, Andrew, et al. (författare)
  • Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:3, s. 299-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (similar to 1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.
  •  
5.
  • Markljung, Ellen, et al. (författare)
  • ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 7:12, s. e1000256-
  • Tidskriftsartikel (refereegranskat)abstract
    • A single nucleotide substitution in intron 3 of IGF2 in pigs abrogates a binding site for a repressor and leads to a 3-fold up-regulation of IGF2 in skeletal muscle. The mutation has major effects on muscle growth, size of the heart, and fat deposition. Here, we have identified the repressor and find that the protein, named ZBED6, is previously unknown, specific for placental mammals, and derived from an exapted DNA transposon. Silencing of Zbed6 in mouse C2C12 myoblasts affected Igf2 expression, cell proliferation, wound healing, and myotube formation. Chromatin immunoprecipitation (ChIP) sequencing using C2C12 cells identified about 2,500 ZBED6 binding sites in the genome, and the deduced consensus motif gave a perfect match with the established binding site in Igf2. Genes associated with ZBED6 binding sites showed a highly significant enrichment for certain Gene Ontology classifications, including development and transcriptional regulation. The phenotypic effects in mutant pigs and ZBED6-silenced C2C12 myoblasts, the extreme sequence conservation, its nucleolar localization, the broad tissue distribution, and the many target genes with essential biological functions suggest that ZBED6 is an important transcription factor in placental mammals, affecting development, cell proliferation, and growth.
  •  
6.
  • Xie, Xiaohui, et al. (författare)
  • Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:17, s. 7145-7150
  • Tidskriftsartikel (refereegranskat)abstract
    • Conserved noncoding elements (CNEs) constitute the majority of sequences under purifying selection in the human genome, yet their function remains largely unknown. Experimental evidence suggests that many of these elements play regulatory roles, but little is known about regulatory motifs contained within them. Here we describe a systematic approach to discover and characterize regulatory motifs within mammalian CNEs by searching for long motifs (12-22 nt) with significant enrichment in CNEs and studying their biochemical and genomic properties. Our analysis identifies 233 long motifs (LMs), matching a total of approximately 60,000 conserved instances across the human genome. These motifs include 16 previously known regulatory elements, such as the histone 3'-UTR motif and the neuron-restrictive silencer element, as well as striking examples of novel functional elements. The most highly enriched motif (LM1) corresponds to the X-box motif known from yeast and nematode. We show that it is bound by the RFX1 protein and identify thousands of conserved motif instances, suggesting a broad role for the RFX family in gene regulation. A second group of motifs (LM2*) does not match any previously known motif. We demonstrate by biochemical and computational methods that it defines a binding site for the CTCF protein, which is involved in insulator function to limit the spread of gene activation. We identify nearly 15,000 conserved sites that likely serve as insulators, and we show that nearby genes separated by predicted CTCF sites show markedly reduced correlation in gene expression. These sites may thus partition the human genome into domains of expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy