SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goedert J) "

Sökning: WFRF:(Goedert J)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Klingstedt, Therése, et al. (författare)
  • The structural basis for optimal performance of oligothiophene based fluorescent amyloid ligands : Conformational flexibility is essential for spectral assignment of a diversity of protein aggregates
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Protein misfolding diseases are characterized by deposition of protein aggregates and optical ligands for molecular characterization of these disease-associated structures are important for understanding their potential role in the pathogenesis of the disease. Luminescent conjugated oligothiophenes (LCOs) have proven useful for optical identification of a broader subset of disease-associated protein aggregates than conventional ligands, such as Thioflavin T (ThT) and Congo red. Herein, the molecular requirements for achieving LCOs able to detect non-thioflavinophilic Aβ aggregates or non-congophilic prion aggregates, as well as spectrally discriminate Aβ and tau aggregates, were investigated. An anionic pentameric LCO was subjected to chemical engineering by i) replacing thiophene units with selenophene or phenylene moieties or ii) alternating the anionic substituents along the  thiophene backbone. In addition, two asymmetric tetrameric ligands were  generated. Overall, the results from this study identified conformational  freedom and extended conjugation of the conjugated backbone as crucial  determinants for obtaining superior thiophene-based optical ligands for  sensitive detection and spectral assignment of diseaseassociated protein aggregates.
  •  
5.
  • Klingstedt, Therése, et al. (författare)
  • The Structural Basis for Optimal Performance of Oligothiophene-Based Fluorescent Amyloid Ligands : Conformational Flexibility is Essential for Spectral Assignment of a Diversity of Protein Aggregates
  • 2013
  • Ingår i: Chemistry - A European Journal. - : Wiley-VCH Verlag. - 0947-6539 .- 1521-3765. ; 19:31, s. 10179-10192
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein misfolding diseases are characterized by deposition of protein aggregates, and optical ligands for molecular characterization of these disease-associated structures are important for understanding their potential role in the pathogenesis of the disease. Luminescent conjugated oligothiophenes (LCOs) have proven useful for optical identification of a broader subset of disease-associated protein aggregates than conventional ligands, such as thioflavin T and Congo red. Herein, the molecular requirements for achieving LCOs able to detect nonthioflavinophilic Aβ aggregates or non-congophilic prion aggregates, as well as spectrally discriminate Aβ and tau aggregates, were investigated. An anionic pentameric LCO was subjected to chemical engineering by: 1) replacing thiophene units with selenophene or phenylene moieties, or 2) alternating the anionic substituents along the thiophene backbone. In addition, two asymmetric tetrameric ligands were generated. Overall, the results from this study identified conformational freedom and extended conjugation of the conjugated backbone as crucial determinants for obtaining superior thiophene-based optical ligands for sensitive detection and spectral assignment of disease-associated protein aggregates.
  •  
6.
  • Brelstaff, Jack, et al. (författare)
  • The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice
  • 2015
  • Ingår i: Frontiers in Neuroscience. - : FRONTIERS MEDIA SA. - 1662-4548 .- 1662-453X. ; 9:184
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of fluorescent dyes that label the filamentous protein aggregates characteristic of neurodegenerative disease, such as beta-amyloid and tau in Alzheimers disease, in a live cell culture system has previously been a major hurdle. Here we show that pentameric formyl thiophene acetic acid (pFTAA) fulfills this function in living neurons cultured from adult P301S tau transgenic mice. Injection of pFTAA into 5-month-old P301S tau mice detected cortical and DRG neurons immunoreactive for AT100, an antibody that identifies solely filamentous tau, or MC1, an antibody that identifies a conformational change in tau that is commensurate with neurofibrillary tangle formation in Alzheimers disease brains. In fixed cultures of dorsal root ganglion (DRG) neurons, pFTAA binding, which also identified AT100 or MC1+ve neurons, followed a single, saturable binding curve with a half saturation constant of 0.14 mu M, the first reported measurement of a binding affinity of a beta-sheet reactive dye to primary neurons harboring filamentous tau. Treatment with formic acid, which solubilizes filamentous tau, extracted pFTAA, and prevented the re-binding of pFTAA and MC1 without perturbing expression of soluble tau, detected using an anti-human tau (HT7) antibody. In live cultures, pFTAA only identified DRG neurons that, after fixation, were AT100/MC1+ve, confirming that these forms of tau pre-exist in live neurons. The utility of pFTAA to discriminate between living neurons containing filamentous tau from other neurons is demonstrated by showing that more pFTAA+ve neurons die than pFTAA-ve neurons over 25 days. Since pFTAA identifies fibrillar tau and other misfolded proteins in living neurons in culture and in animal models of several neurodegenerative diseases, as well as in human brains, it will have considerable application in sorting out disease mechanisms and in identifying diseasemodifying drugs that will ultimately help establish the mechanisms of neurodegeneration in human neurodegenerative diseases.
  •  
7.
  •  
8.
  • Iovino, Mariangela, et al. (författare)
  • The novel MAPT mutation K298E: mechanisms of mutant tau toxicity, brain pathology and tau expression in induced fibroblast-derived neurons
  • 2014
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 127:2, s. 283-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal lobar degeneration (FTLD) consists of a group of neurodegenerative diseases characterized by behavioural and executive impairment, language disorders and motor dysfunction. About 20-30 % of cases are inherited in a dominant manner. Mutations in the microtubule-associated protein tau gene (MAPT) cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17T). Here we report a novel MAPT mutation (K298E) in exon 10 in a patient with FTDP-17T. Neuropathological studies of post-mortem brain showed widespread neuronal loss and gliosis and abundant deposition of hyperphosphorylated tau in neurons and glia. Molecular studies demonstrated that the K298E mutation affects both protein function and alternative mRNA splicing. Fibroblasts from a skin biopsy of the proband taken at post-mortem were directly induced into neurons (iNs) and expressed both 3-repeat and 4-repeat tau isoforms. As well as contributing new knowledge on MAPT mutations in FTDP-17T, this is the first example of the successful generation of iNs from skin cells retrieved post-mortem.
  •  
9.
  • Yang, Y, et al. (författare)
  • Cryo-EM structures of amyloid-β filaments with the Arctic mutation (E22G) from human and mouse brains
  • 2023
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 145:3, s. 325-333
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic mutation, encoding E693G in the amyloid precursor protein (APP) gene [E22G in amyloid-β (Aβ)], causes dominantly inherited Alzheimer’s disease. Here, we report the high-resolution cryo-EM structures of Aβ filaments from the frontal cortex of a previously described case (AβPParc1) with the Arctic mutation. Most filaments consist of two pairs of non-identical protofilaments that comprise residues V12–V40 (human Arctic fold A) and E11–G37 (human Arctic fold B). They have a substructure (residues F20–G37) in common with the folds of type I and type II Aβ42. When compared to the structures of wild-type Aβ42 filaments, there are subtle conformational changes in the human Arctic folds, because of the lack of a side chain at G22, which may strengthen hydrogen bonding between mutant Aβ molecules and promote filament formation. A minority of Aβ42 filaments of type II was also present, as were tau paired helical filaments. In addition, we report the cryo-EM structures of Aβ filaments with the Arctic mutation from mouse knock-in line AppNL−G−F. Most filaments are made of two identical mutant protofilaments that extend from D1 to G37 (AppNL−G−F murine Arctic fold). In a minority of filaments, two dimeric folds pack against each other in an anti-parallel fashion. The AppNL−G−F murine Arctic fold differs from the human Arctic folds, but shares some substructure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy