SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goodeve Anne) "

Sökning: WFRF:(Goodeve Anne)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cartwright, Ashley, et al. (författare)
  • Characterization of large in-frame von Willebrand factor deletions highlights differing pathogenic mechanisms
  • 2020
  • Ingår i: Blood Advances. - 2473-9529 .- 2473-9537. ; 4:13, s. 2979-2990
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34. Heterozygous in vitro recombinant VWF expression demonstrated that, although deletion of exons 3, 32-34, and 33-34 all resulted in significant reductions in total VWF (P < .0001, P < .001, and P < .01, respectively), only deletion of exons 3 and 32-34 had a significant impact on VWF secretion (P < .0001). High-resolution microscopy of heterozygous and homozygous deletions confirmed these observations, indicating that deletion of exons 3 and 32-34 severely impaired pseudo-Weibel-Palade body (WPB) formation, whereas deletion of exons 33-34 did not, with this variant still exhibiting pseudo-WPB formation similar to wild-type VWF. In-frame deletions in VWD, therefore, contribute to pathogenesis via moderate or severe defects in VWF biosynthesis and secretion.
  •  
2.
  • Cartwright, Ashley, et al. (författare)
  • Characterization of large in-frame von Willebrand factor deletions highlights differing pathogenic mechanisms
  • 2020
  • Ingår i: Blood Advances. - : Elsevier BV. - 2473-9529 .- 2473-9537. ; 4:13, s. 2979-2990
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34. Heterozygous in vitro recombinant VWF expression demonstrated that, although deletion of exons 3, 32-34, and 33-34 all resulted in significant reductions in total VWF (P < .0001, P < .001, and P < .01, respectively), only deletion of exons 3 and 32-34 had a significant impact on VWF secretion (P < .0001). High-resolution microscopy of heterozygous and homozygous deletions confirmed these observations, indicating that deletion of exons 3 and 32-34 severely impaired pseudo-Weibel-Palade body (WPB) formation, whereas deletion of exons 33-34 did not, with this variant still exhibiting pseudo-WPB formation similar to wild-type VWF. In-frame deletions in VWD, therefore, contribute to pathogenesis via moderate or severe defects in VWF biosynthesis and secretion.
  •  
3.
  • Castaman, Giancarlo, et al. (författare)
  • Response to desmopressin is influenced by the genotype and phenotype in type 1 von Willebrand disease (VWD): results from the European Study MCMDM-1VWD
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 111:7, s. 3531-3539
  • Tidskriftsartikel (refereegranskat)abstract
    • We have prospectively evaluated the biologic response to desmopressin in 77 patients with type 1 von Willebrand disease (VWD) enrolled within the Molecular and Clinical Markers for the Diagnosis and Management of type 1 VWD project. Complete response to desmopressin was defined as an increase of both ristocetin cofactor activity (VWF:RCo) and factor VIII coagulant activity (FVIII:C) to 50 IU/dL or higher and partial response as VWF: RCo or FVIII:C lower than 50 IU/dL after infusion, but at least 3-fold the basal level. Complete response was observed in 83% of patients; partial in 13%; and no response in 4%. Patients with some abnormality of VWF multimeric pattern had significantly lower basal FVIII:C and VWF, lower VWF:RCo/Ag ratio, and less complete responses to desmopressin than patients with a normal multimeric pattern (P =.002). Patients with mutations at codons 1130 and 1205 in the D'-D3 domain had the greatest relative increase, but shortest FVIII and VWF half-lives after infusion. Most partial and nonresponsive patients had mutations in the A1-A3 domains. Response to desmopressin in these VWD patients seemed to be associated with the location of the causative mutation. The presence of subtle multimeric abnormalities did not hamper potential clinically useful responses, as in typical type 1 VWD.
  •  
4.
  • Castaman, Giancarlo, et al. (författare)
  • The impact of bleeding history, von Willebrand factor and PFA-100 (R) on the diagnosis of type 1 von Willebrand disease: results from the European study MCMDM-1VWD
  • 2010
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048. ; 151:3, s. 245-251
  • Tidskriftsartikel (refereegranskat)abstract
    • P>The relationships between the Platelet Function Analyzer (PFA)-100 and von Willebrand factor (VWF) levels and bleeding score (BS) were evaluated within a multicentre project on Molecular and Clinical Markers for the Diagnosis and Management of type 1 von Willebrand disease (MCMDM-1VWD). PFA-100 closure time, either with epinephrine (EPI) or adenosine diphosphate (ADP)-cartridges, was measured in 107 index cases, 105 affected and 71 unaffected family members, and 79 healthy controls. By regression analysis VWF levels were strongly related to both closure times, with a non-linear progression. In a multiple stepwise regression model, age- and sex-adjusted PFA-100 ADP and VWF ristocetin cofactor activity (VWF:RCo) were independently associated with BS. Most of the variation of BS was predicted by PFA-100 ADP and VWF:RCo alone. In the subgroup of patients with subtle abnormalities of the multimeric pattern, VWF was invariably reduced and closure time prolonged in almost all of them. Neither PFA-100 ADP nor EPI closure times appeared to significantly improve the diagnostic capability of VWF antigen (VWF:Ag) measurement. Thus, in an unselected population a normal PFA-100 would be useful to exclude VWD, but whether it could replace the more specific VWF assay in patients with significant mucocutaneous bleeding symptoms remains to be investigated prospectively.
  •  
5.
  • Engert, Andreas, et al. (författare)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • Ingår i: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
6.
  • Goodeve, Anne, et al. (författare)
  • Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD)
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 109:1, s. 112-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 von Willebrand disease (VWD) is characterized by a personal and family history of bleeding coincident with reduced levels of normal plasma von Willebrand factor (VWF). The molecular basis of the disorder is poorly understood. The aims of this study were to determine phenotype and genotype and their relationship in patients historically diagnosed with type 1 VWD. Families were recruited in 9 European countries based on previous type 1 VWD diagnosis. Bleeding symptoms were recorded, plasma phenotype analyzed, and VWF mutation analysis performed in all index cases (ICs). Phenotypic and molecular analysis stratified patients into those with or without phenotypes suggestive of qualitative VWF defects (abnormal multimers) and with or without mutations. A total of 105 of 150 ICs (70%) had mutations identified. A subgroup with abnormal multimers (38% of ICs, 57 of 150) showed a high prevalence of VWF gene mutations (95% of ICs, 54 of 57), whereas in those with qualitatively normal VWF, fewer mutations were identified (55% of ICs, 51 of 93). About one third of the type I VWD cases recruited could be reconsidered as type 2. The remaining group could be considered "true" type 1 VWD, although mutations were found in only 55%.
  •  
7.
  • Haberichter, Sandra L, et al. (författare)
  • Identification of type 1 von Willebrand disease patients with reduced von Willebrand factor survival by assay of the VWF propeptide in the European study: Molecular and Clinical Markers for the Diagnosis and Management of Type 1 VWD (MCMDM-1VWD)
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 111:10, s. 4979-4985
  • Tidskriftsartikel (refereegranskat)abstract
    • The decreased survival of von Willebrand factor (VWF) in plasma has been implicated as a mechanism in a subset of type 1 von Willebrand disease (VWD) patients. We have previously reported that the ratio of plasma levels of VWF and its propeptide (VWFpp) can be used to identify patients with reduced VWF survival. In this study, we report the assay of VWFpp and VWF:Ag in 19 individuals recruited from 6 European centers within the MCMDM-1VWD study. Eight individuals had a VWF:Ag level less than 30 IU/dL. Seven of these patients had a robust desmopressin response and significantly reduced VWF half-life that was predicted by a markedly increased steady-state plasma VWFpp/VWF:Ag ratio. VWF mutations previously associated with reduced VWF survival were identified in each of the 7 individuals. Thus, a substantially increased ratio of steady-state VWFpp/ VWF:Ag predicted a reduced VWF half-life in patients with markedly decreased VWF:Ag levels. These data indicate that a reduced VWF survival is found in a sub-population of patients with type 1 VWD. The systematic assay of both plasma VWF and the VWF propeptide in moderately severe type 1 VWD patients may identify patients with a reduced VWF survival phenotype.
  •  
8.
  • Mufti, Ahmad H, et al. (författare)
  • The common VWF single nucleotide variants c.2365A>G and c.2385T>C modify VWF biosynthesis and clearance
  • 2018
  • Ingår i: Blood Advances. - 2473-9529 .- 2473-9537. ; 2:13, s. 1585-1594
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma levels of von Willebrand factor (VWF) vary considerably in the general population and this variation has been linked to several genetic and environmental factors. Genetic factors include 2 common single nucleotide variants (SNVs) located in VWF, rs1063856 (c.2365A>G) and rs1063857 (c.2385T>C), although to date the mechanistic basis for their association with VWF level is unknown. Using genotypic/phenotypic information from a European healthy control population, in vitro analyses of recombinant VWF expressing both SNVs, and in vivo murine models, this study determined the precise nature of their association with VWF level and investigated the mechanism(s) involved. Possession of either SNV corresponded with a significant increase in plasma VWF in healthy controls (P < .0001). In vitro expression confirmed this observation and highlighted an independent effect for each SNV (P < .0001 and P < .01, respectively), despite close proximity and strong linkage disequilibrium between them both. The influence of c.2365A>G on VWF levels was also confirmed in vivo. This increase in VWF protein corresponded to an increase in VWF messenger RNA (mRNA) resulting, in part, from prolonged mRNA half-life. In addition, coinheritance of both SNVs was associated with a lower VWF propeptide-to-VWF antigen ratio in healthy controls (P < .05) and a longer VWF half-life in VWF knockout mice (P < .0001). Both SNVs therefore directly increase VWF plasma levels through a combined influence on VWF biosynthesis and clearance, and may have an impact on disease phenotype in both hemostatic and thrombotic disorders.
  •  
9.
  • Mufti, Ahmad H, et al. (författare)
  • The common VWF single nucleotide variants c.2365A>G and c.2385T>C modify VWF biosynthesis and clearance
  • 2018
  • Ingår i: Blood Advances. - : Elsevier BV. - 2473-9529 .- 2473-9537. ; 2:13, s. 1585-1594
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma levels of von Willebrand factor (VWF) vary considerably in the general population and this variation has been linked to several genetic and environmental factors. Genetic factors include 2 common single nucleotide variants (SNVs) located in VWF, rs1063856 (c.2365A>G) and rs1063857 (c.2385T>C), although to date the mechanistic basis for their association with VWF level is unknown. Using genotypic/phenotypic information from a European healthy control population, in vitro analyses of recombinant VWF expressing both SNVs, and in vivo murine models, this study determined the precise nature of their association with VWF level and investigated the mechanism(s) involved. Possession of either SNV corresponded with a significant increase in plasma VWF in healthy controls (P < .0001). In vitro expression confirmed this observation and highlighted an independent effect for each SNV (P < .0001 and P < .01, respectively), despite close proximity and strong linkage disequilibrium between them both. The influence of c.2365A>G on VWF levels was also confirmed in vivo. This increase in VWF protein corresponded to an increase in VWF messenger RNA (mRNA) resulting, in part, from prolonged mRNA half-life. In addition, coinheritance of both SNVs was associated with a lower VWF propeptide-to-VWF antigen ratio in healthy controls (P < .05) and a longer VWF half-life in VWF knockout mice (P < .0001). Both SNVs therefore directly increase VWF plasma levels through a combined influence on VWF biosynthesis and clearance, and may have an impact on disease phenotype in both hemostatic and thrombotic disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy