SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grallert Harald) "

Sökning: WFRF:(Grallert Harald)

  • Resultat 1-10 av 63
  • [1]234567Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Graff, Mariaelisa, et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genet. - 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
3.
  • Berndt, Sonja I., et al. (författare)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 45:5, s. 501-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
4.
  • Claussnitzer, Melina, et al. (författare)
  • Leveraging cross-species transcription factor binding site patterns: from diabetes risk Loci to disease mechanisms.
  • 2014
  • Ingår i: Cell. - Cell Press. - 1097-4172. ; 156:1-2, s. 343-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.
5.
  • Dick, Katherine J., et al. (författare)
  • DNA methylation and body-mass index : a genome-wide analysis
  • 2014
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 383:9933, s. 1990-1998
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Obesity is a major health problem that is determined by interactions between lifestyle and environmental and genetic factors. Although associations between several genetic variants and body-mass index (BMI) have been identified, little is known about epigenetic changes related to BMI. We undertook a genome-wide analysis of methylation at CpG sites in relation to BMI. Methods 479 individuals of European origin recruited by the Cardiogenics Consortium formed our discovery cohort. We typed their whole-blood DNA with the Infinium HumanMethylation450 array. After quality control, methylation levels were tested for association with BMI. Methylation sites showing an association with BMI at a false discovery rate q value of 0.05 or less were taken forward for replication in a cohort of 339 unrelated white patients of northern European origin from the MARTHA cohort. Sites that remained significant in this primary replication cohort were tested in a second replication cohort of 1789 white patients of European origin from the KORA cohort. We examined whether methylation levels at identified sites also showed an association with BMI in DNA from adipose tissue (n=635) and skin (n=395) obtained from white female individuals participating in the MuTHER study. Finally, we examined the association of methylation at BMI-associated sites with genetic variants and with gene expression. Findings 20 individuals from the discovery cohort were excluded from analyses after quality-control checks, leaving 459 participants. After adjustment for covariates, we identified an association (q value <= 0.05) between methylation at five probes across three different genes and BMI. The associations with three of these probes-cg22891070, cg27146050, and cg16672562, all of which are in intron 1 of HIF3A-were confirmed in both the primary and second replication cohorts. For every 0.1 increase in methylation beta value at cg22891070, BMI was 3.6% (95% CI 2.4-4.9) higher in the discovery cohort, 2.7% (1.2-4.2) higher in the primary replication cohort, and 0.8% (0.2-1.4) higher in the second replication cohort. For the MuTHER cohort, methylation at cg22891070 was associated with BMI in adipose tissue (p=1.72 x 10(-5)) but not in skin (p=0.882). We observed a significant inverse correlation (p=0.005) between methylation at cg22891070 and expression of one HIF3A gene-expression probe in adipose tissue. Two single nucleotide polymorphisms-rs8102595 and rs3826795-had independent associations with methylation at cg22891070 in all cohorts. However, these single nucleotide polymorphisms were not significantly associated with BMI. Interpretation Increased BMI in adults of European origin is associated with increased methylation at the HIF3A locus in blood cells and in adipose tissue. Our findings suggest that perturbation of hypoxia inducible transcription factor pathways could have an important role in the response to increased weight in people.
  •  
6.
  • Do, Ron, et al. (författare)
  • Common variants associated with plasma triglycerides and risk for coronary artery disease
  • 2013
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 45:11, s. 1345-
  • Tidskriftsartikel (refereegranskat)abstract
    • Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 x 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
  •  
7.
  • Dupuis, Josée, et al. (författare)
  • New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:2, s. 32-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
  •  
8.
  • Fall, Tove, et al. (författare)
  • Age- and Sex-Specific Causal Effects of Adiposity on Cardiovascular Risk Factors.
  • 2015
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 1939-327X. ; 64:5, s. 1841-1852
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, and fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
  •  
9.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (&gt; 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
10.
  • Flannick, Jason, et al. (författare)
  • Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - Nature Publishing Group. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (&gt; 80% of low-frequency coding variants in similar to 82 K Europeans via the exome chip, and similar to 90% of low-frequency non-coding variants in similar to 44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 63
  • [1]234567Nästa
Åtkomst
fritt online (25)
Typ av publikation
tidskriftsartikel (62)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (63)
Författare/redaktör
Gieger, Christian (48)
Wareham, Nicholas J. (42)
McCarthy, Mark I (41)
Kuusisto, Johanna, (39)
Laakso, Markku, (39)
Boehnke, Michael (39)
visa fler...
Langenberg, Claudia (38)
Morris, Andrew P. (38)
Illig, Thomas (37)
Prokopenko, Inga (36)
Salomaa, Veikko (35)
Jackson, Anne U. (35)
Tuomilehto, Jaakko (35)
Loos, Ruth J. F. (35)
Lindgren, Cecilia M. (35)
Collins, Francis S. (34)
Lind, Lars, (33)
Peters, Annette (33)
Luan, Jian'an (33)
Hofman, Albert, (32)
Mohlke, Karen L (32)
Thorleifsson, Gudmar (32)
Barroso, Ines (31)
Stringham, Heather M ... (31)
Froguel, Philippe, (30)
Esko, Tonu (30)
Hayward, Caroline (30)
Campbell, Harry (30)
Frayling, Timothy M. (30)
Uitterlinden, Andre ... (29)
Hansen, Torben, (29)
Mangino, Massimo (29)
Wilson, James F. (29)
Scott, Robert A (28)
Rudan, Igor (28)
Metspalu, Andres (28)
Palmer, Colin N. A. (28)
Van Duijn, Cornelia ... (27)
Ingelsson, Erik (27)
Hattersley, Andrew T (27)
Steinthorsdottir, Va ... (27)
Bergman, Richard N. (27)
Stefansson, Kari (27)
Lyssenko, Valeriya, (26)
Groop, Leif, (26)
Deloukas, Panos (26)
Stancáková, Alena, (26)
Pedersen, Oluf, (26)
Qi, Lu (26)
Thorsteinsdottir, Un ... (26)
visa färre...
Lärosäte
Uppsala universitet (45)
Lunds universitet (44)
Karolinska Institutet (33)
Umeå universitet (25)
Göteborgs universitet (23)
Stockholms universitet (3)
visa fler...
Högskolan Dalarna (3)
Mittuniversitetet (2)
visa färre...
Språk
Engelska (63)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (62)
Naturvetenskap (9)
Samhällsvetenskap (2)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy