SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grammer Tanja B.) "

Sökning: WFRF:(Grammer Tanja B.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
2.
  • Shungin, Dmitry, et al. (författare)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 518:7538, s. 187-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
3.
  •  
4.
  • Graff, Mariaelisa, et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genet. - 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
5.
  • Winkler, Thomas W., et al. (författare)
  • The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape A Large-Scale Genome-Wide Interaction Study
  • 2015
  • Ingår i: PLoS Genetics. - 1553-7390 .- 1553-7404. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men &lt;= 50y, men &gt; 50y, women &lt;= 50y, women &gt; 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR&lt; 5%) age-specific effects, of which 11 had larger effects in younger (&lt; 50y) than in older adults (&gt;= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
6.
  • Justice, Anne E, et al. (författare)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • Ingår i: Nature Communications. - NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
7.
  • Wood, Andrew R, et al. (författare)
  • Defining the role of common variation in the genomic and biological architecture of adult human height
  • 2014
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 46:11, s. 1173-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
8.
  • Kato, Norihiro, et al. (författare)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation.
  • 2015
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 47:11, s. 93-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.0 × 10(-21)). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10(-6)). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
9.
  • Lindholm, Daniel, 1982-, et al. (författare)
  • Biomarker-Based Risk Model to Predict Cardiovascular Mortality in Patients With Stable Coronary Disease
  • 2017
  • Ingår i: Journal of the American College of Cardiology. - Elsevier. - 0735-1097 .- 1558-3597. ; 70:7, s. 813-826
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Currently, there is no generally accepted model to predict outcomes in stable coronary heart disease (CHD).Objectives This study evaluated and compared the prognostic value of biomarkers and clinical variables to develop a biomarker-based prediction model in patients with stable CHD.Methods In a prospective, randomized trial cohort of 13,164 patients with stable CHD, we analyzed several candidate biomarkers and clinical variables and used multivariable Cox regression to develop a clinical prediction model based on the most important markers. The primary outcome was cardiovascular (CV) death, but model performance was also explored for other key outcomes. It was internally bootstrap validated, and externally validated in 1,547 patients in another study.Results During a median follow-up of 3.7 years, there were 591 cases of CV death. The 3 most important biomarkers were N-terminal pro–B-type natriuretic peptide (NT-proBNP), high-sensitivity cardiac troponin T (hs-cTnT), and low-density lipoprotein cholesterol, where NT-proBNP and hs-cTnT had greater prognostic value than any other biomarker or clinical variable. The final prediction model included age (A), biomarkers (B) (NT-proBNP, hs-cTnT, and low-density lipoprotein cholesterol), and clinical variables (C) (smoking, diabetes mellitus, and peripheral arterial disease). This “ABC-CHD” model had high discriminatory ability for CV death (c-index 0.81 in derivation cohort, 0.78 in validation cohort), with adequate calibration in both cohorts.Conclusions This model provided a robust tool for the prediction of CV death in patients with stable CHD. As it is based on a small number of readily available biomarkers and clinical factors, it can be widely employed to complement clinical assessment and guide management based on CV risk. (The Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy Trial [STABILITY]; NCT00799903)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Åtkomst
fritt online (5)
Typ av publikation
tidskriftsartikel (9)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Kleber, Marcus E. (9)
Stancáková, Alena, (8)
Scott, Robert A (8)
Luan, Jian'an (8)
Esko, Tonu (8)
Kumari, Meena (8)
visa fler...
Yengo, Loïc, (7)
Teumer, Alexander, (7)
Blangero, John, (7)
Gudnason, Vilmundur, (7)
Hartman, Catharina A ... (7)
Hofman, Albert, (7)
Montgomery, Grant W. ... (7)
Kuusisto, Johanna, (7)
Rose, Lynda M (7)
Langenberg, Claudia (7)
Mangino, Massimo (7)
Gieger, Christian (7)
Jackson, Anne U. (7)
Heard-Costa, Nancy L ... (7)
Winkler, Thomas W. (7)
Feitosa, Mary F. (7)
Hayward, Caroline (7)
Sanna, Serena (7)
Campbell, Harry (7)
Stringham, Heather M ... (7)
Bergman, Richard N. (7)
Collins, Francis S. (7)
Harris, Tamara B. (7)
Müller-Nurasyid, Mar ... (7)
Nolte, Ilja M (7)
Tanaka, Toshiko (7)
James, Alan L (7)
Beilby, John (7)
Wong, Andrew (7)
van Vliet-Ostaptchou ... (7)
Raitakari, Olli T (6)
Amin, Najaf, (6)
Chasman, Daniel I., (6)
Lehtimäki, Terho, (6)
Peters, Annette (6)
Jarvelin, Marjo-Riit ... (6)
Prokopenko, Inga (6)
Kutalik, Zoltan (6)
Monda, Keri L. (6)
Wright, Alan F. (6)
Metspalu, Andres (6)
Vohl, Marie-Claude (6)
Kooperberg, Charles (6)
Verweij, Niek (6)
visa färre...
Lärosäte
Göteborgs universitet (7)
Umeå universitet (7)
Lunds universitet (7)
Uppsala universitet (7)
Karolinska Institutet (7)
Högskolan Dalarna (3)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy