SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Granqvist Claes Göran) ;conttype:(scientificother)"

Sökning: WFRF:(Granqvist Claes Göran) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-10 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aijaz, Asim, et al. (författare)
  • Deposition of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering
  • 2014
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Vanadium dioxide exhibits a reversible phase transition from semiconducting state (monoclinic structure) to a metallic state (tetragonal structure) at ~68 oC. This so-called metal-insulator transition (MIT) entails thermochromic behavior manifested by large changes in optical properties, such as high infrared transmittance modulation in thin films, thereby making VO2-based films a suitable candidate for optical switching applications such as self-tunable infrared filters. Thermochromic VO2 thin films have been widely investigated for optical applications, but high growth temperatures (> 400 oC) required for synthesizing crystalline VO2 thin films, high MIT temperature (68 oC) as well as low visible transmittance (typically ~50%) limit their applicability for example for energy efficient smart windows. Synthesis of metal-oxide thin films using highly ionized vapor fluxes has been shown to facilitate low-temperature film growth as well as control over phase formation and resulting film properties. In the present work, we synthesize VO2 thin films by use of highly ionized vapor fluxes that are generated by high power impulse magnetron sputtering (HiPIMS). In order to establish a correlation between the plasma and film properties, we investigate the discharge characteristics by analyzing the discharge current-voltage characteristics under varied process parameters such as peak-power, pulse-width and gas phase composition and grow VO2 thin films under suitable process conditions. We investigate the effect of growth temperature (room temperature to 500 oC), energy of the deposition flux (controlled by substrate bias potential) and type of substrate (Si, glass, ITO-coated glass) on crystallinity, phase formation and on optical properties (visible transmittance and infrared modulation) of the resulting thin films. For reference, the discharge characteristics and properties of films deposited by pulsed direct current magnetron sputtering are also studied.         
  •  
2.
  • Atak, Gamze, et al. (författare)
  • Durability studies of annealed electrochromic tungsten oxide films
  • 2021
  • Ingår i: EMRS Fall Meeting 2021.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In electrochromic (EC) applications, annealing is a crucial parameter not only for an individual layer but also for a full device. For the fabrication of a complete EC device, indium tin oxide (ITO) is often preferred as a transparent conductor layer. ITO films with high transparency and low electrical resistance are usually obtained by sputtering at high substrate temperatures. Consequently, the effect of high temperature on the EC layers can be very significant during sputtering of the ITO top layer for EC devices consisting of five sputtered layers on a single substrate. The role of annealing of a single layer of WO3 may also be important for EC performance. In the present work, we studied the effects of annealing on the durability of WO3 films. Thin films of WO3 were deposited by reactive DC magnetron sputtering in a mixture of Ar and O2 gases using an oxygen to argon ratio of 0.15. The total gas pressure was set to 4.0 Pa, and the sputtering power was 200 W. The WO3 films were deposited onto (i) unheated glass plates, (ii) such plates pre-coated with transparent and electrically conducting ITO with a sheet resistance of 60 Ω/square, and (iii) glass plates pre-coated with fluorine-doped tin oxide (FTO) with a sheet resistance of 14 Ω/square. Film thicknesses were 300±10 nm. After deposition of the films, the samples were annealed at 150, 300, 450, and 600 °C in ambient air for one h using a heating rate of 10 °C min-1. Cyclic voltammetry (CV) was performed for up to 500 cycles between 2.0 and 4.0 V vs. Li/Li+ at a scan rate of 20 mV s–1. Annealing at temperatures at and above 300 °C resulted in deteriorated electrochromic properties of the WO3 films i.e., a decreased transmittance variation. Charge density and coloration efficiency changes during extended electrochemical cycling were also observed as a function of cycle number and annealing temperature. It was found that the maximum optical transmittance modulation at a wavelength of 528 nm after 500 CV cycles was 69.3% for the film annealed at 150 °C.
  •  
3.
  • Atak, Gamze, et al. (författare)
  • The role of oxygen to argon gas flow ratio on the durability of sputter-deposited electrochromic tungsten oxide films
  • 2021
  • Ingår i: EMRS Fall Meeting 2021.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Materials that are able to vary their transparency and coloration reversibly when they are subjected to an electrical current or voltage are referred to as “electrochromic” (EC). High optical transmittance modulation and long service lifetime are apparent requirements for EC materials used in smart windows technology. An extended service lifetime is provided by the long-term durability of the materials. One important aspect of durability is the ability to sustain charge transport between the EC film and electrolyte, or between the two EC films in a device, for many hundreds or thousands of cycles without any significant changes in the performance such as optical modulation and inserted-extracted charge. The purpose of this study is to clarify the effects of the oxygen-argon gas flow ratio during sputter deposition on the durability of WO3 films. In this study, the oxygen to argon gas-flow ratio was modulated by setting the O2 flow rate to 7.5, 15.0, 22.5, and 45.0 ml min-1 and using a fixed Ar flow rate of 50 ml min-1. Thus, the oxygen to argon gas-flow ratio was varied from 0.15 to 0.90. The pressure in the sputter plasma was set as 30 mTorr and the sputter power was maintained at 200 W. For durability studies, cyclic voltammetry data were recorded for up to 500 cycles between 2.0 and 4.0 V versus Li/Li+ at a scan rate of 20 mV s-1. High oxygen to argon gas ratio was found to have a positive effect on the EC properties of the films. When the long-term performance of the films was examined, it was seen that all the samples displayed a slow decline of the colored-state transmittance due to ion accumulation in the host material. After 500 color-bleach cycles, the maximum optical transmittance modulation between colored and bleached states at a wavelength of 528 nm was 63.6% when the oxygen to argon gas-flow ratio was 0.90.
  •  
4.
  • Avendaño Soto, Esteban Damián, 1975- (författare)
  • Electrochromism in Nickel-based Oxides : Coloration Mechanisms and Optimization of Sputter-deposited Thin Films
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Electrochromic properties of sputter-deposited nickel-based oxide films have been studied with a two-fold goal. From a practical point of view, the optical switching performance has been improved by optimizing the deposition conditions and film stoichiometry with respect to oxygen and hydrogen, and further by adding Mg, Al, Si, Zr, Nb or Ta to the films. From a theoretical point of view, details of the coloration mechanism have been studied by means of electrochemical intercalation (CV, GITT), optical measurements (UV, VIS, NIR and MIR), RBS, XRD, XPS and EXAFS. Optimization of deposition conditions has been illustrated by the example of films made by sputtering of a non-magnetic Ni(93)V(7) % wt. target in an atmosphere of Ar/O2/H2. The optimized films exhibit transmittance modulation between 20% and 75 % at 18 mC/cm2 charge intercalation. The remaining problem with nickel oxide and nickel vanadium oxide films is their residual yellow-brown color tint in the bleached state, which disappears as the short-wavelength transmittance increases upon addition of Mg, Al, Zr or Ta. Optimization of deposition conditions by co-sputtering from two targets and the film composition for mixed oxide films has been illustrated by the example of nickel aluminium oxide. The mechanisms of coloration upon electrochemical charge insertion and ozone exposure have been investigated. In the beginning of the electrochemical cycling, first, a reconstruction and crystallization is observed with the outer most part of the grain surface being transformed from oxygen rich nickel oxide into nickel oxy-hydroxide and hydroxide by transfer of H+ and OH- groups. After the charge capacity has been stabilized, only a transfer of H+ occurs with two reversible reactions involved: the first one from Ni(OH)2 to NiOOH and the second one from NiO and Ni(OH)2 to Ni2O3. Ozone coloration is described by a similar reaction scheme. The ozone molecule is split on the surface and dehydrogenates Ni(OH)2 into NiOOH. Further dehydrogenation produces Ni2O3 as in the electrochemical coloration.
  •  
5.
  •  
6.
  •  
7.
  • Bayrak Pehlivan, İlknur (författare)
  • Functionalization of polymer electrolytes for electrochromic windows
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Saving energy in buildings is of great importance because about 30 to 40 % of the energy in the world is used in buildings. An electrochromic window (ECW), which makes it possible to regulate the inflow of visible light and solar energy into buildings, is a promising technology providing a reduction in energy consumption in buildings along with indoor comfort. A polymer electrolyte is positioned at the center of multi-layer structure of an ECW and plays a significant role in the working of the ECW.In this study, polyethyleneimine: lithium (bis(trifluoromethane)sulfonimide (PEI:LiTFSI)-based polymer electrolytes were characterized by using dielectric/impedance spectroscopy, differential scanning calorimetry, viscosity recording, optical spectroscopy, and electrochromic measurements.In the first part of the study, PEI:LiTFSI electrolytes were characterized at various salt concentrations and temperatures. Temperature dependence of viscosity and ionic conductivity of the electrolytes followed Arrhenius behavior. The viscosity was modeled by the Bingham plastic equation. Molar conductivity, glass transition temperature, viscosity, Walden product, and iso-viscosity conductivity analysis showed effects of segmental flexibility, ion pairs, and mobility on the conductivity. A connection between ionic conductivity and ion-pair relaxation was seen by means of (i) the Barton-Nakajima-Namikawa relation, (ii) activation energies of the bulk relaxation, and ionic conduction and (iii) comparing two equivalent circuit models, containing different types of Havriliak-Negami elements, for the bulk response.In the second part, nanocomposite PEI:LiTFSI electrolytes with SiO2, In2O3, and In2O3:Sn (ITO) were examined. Adding SiO2 to the PEI:LiTFSI enhanced the ionic conductivity by an order of magnitude without any degradation of the optical properties. The effect of segmental flexibility and free ion concentration on the conduction in the presence of SiO2 is discussed. The PEI:LiTFSI:ITO electrolytes had high haze-free luminous transmittance and strong near-infrared absorption without diminished ionic conductivity. Ionic conductivity and optical clarity did not deteriorate for the PEI:LiTFSI:In2O3 and the PEI:LiTFSI:SiO2:ITO electrolytes.Finally, propylene carbonate (PC) and ethylene carbonate (EC) were added to PEI:LiTFSI in order to perform electrochromic measurements. ITO and SiO2 were added to the PEI:LiTFSI:PC:EC and to a proprietary electrolyte. The nanocomposite electrolytes were tested for ECWs with the configuration of the ECWs being plastic/ITO/WO3/polymer electrolyte/NiO (or IrO2)/ITO/plastic. It was seen that adding nanoparticles to polymer electrolytes can improve the coloring/bleaching dynamics of the ECWs.From this study, we show that nanocomposite polymer electrolytes can add new functionalities as well as enhancement in ECW applications.
  •  
8.
  •  
9.
  • Cindemir, Umut, et al. (författare)
  • Porous Nickel Oxide Sensor for Formaldehyde Detection
  • 2014
  • Ingår i: European Materials Society (E-MRS) Spring Meeting, Lille, France, May 26-30, 2014..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Formaldehyde is a volatile organic compound, which is a harmful indoor pollutant, causing sick building syndrome (SBS) and is released from household and building materials. Since higher concentrations of formaldehyde are considered to be carcinogenic, monitoring them indoors is of great importance. Advanced gas deposition has here been used to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes, and a resistive heater at the opposite face. The morphology of the films was investigated with scanning electron microscopy, and the porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. The particle size was found to be less than 10 nm, as determined by x-ray diffraction. X-ray photoelectron spectroscopy of the NiO films was also done. Gas sensing measurements were done using a total gas flow rate of 200 ml/min. Resistivity values of sensors were recorded with formaldehyde diluted in synthetic air. Sensor resistances were recorded at 50 ppm, 25ppm, 10ppm and 5 ppm formaldehyde concentration. NiO films showed promising formaldehyde gas sensing properties implying lower levels of detection limit.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49
Typ av publikation
konferensbidrag (17)
doktorsavhandling (17)
annan publikation (3)
licentiatavhandling (3)
samlingsverk (redaktörskap) (2)
rapport (2)
visa fler...
tidskriftsartikel (2)
bokkapitel (2)
recension (1)
visa färre...
Typ av innehåll
Författare/redaktör
Granqvist, Claes-Gör ... (23)
Granqvist, Claes Gör ... (19)
Niklasson, Gunnar A. ... (9)
Österlund, Lars (5)
Bayrak Pehlivan, Ilk ... (5)
Niklasson, Gunnar A. (4)
visa fler...
Niklasson, Gunnar, 1 ... (3)
Hjort, Klas (2)
Nilsson, Leif (2)
Arwin, Hans (2)
Helmersson, Ulf, Pro ... (2)
Ji, Yu-Xia (2)
Roos, Arne (2)
Atak, Gamze (2)
Montero Amenedo, Jos ... (2)
van Veldhuizen, Elbe ... (2)
Westerberg, Lars (2)
Montero, José Amened ... (2)
Ziemann, Volker (1)
Kasemo, Bengt, Profe ... (1)
Karlsson, Björn (1)
Wäckelgård, Ewa (1)
Österlund, Lars, 196 ... (1)
Nordgren, Joseph (1)
Österlund, Lars, Pro ... (1)
Dubois, Marie Claude (1)
Kubart, Tomas (1)
Aijaz, Asim (1)
Montero, Jose (1)
Strömme, Maria (1)
Nordell, Bo (1)
Heszler, Peter (1)
Sjöqvist, Erik (1)
Niklasson, Gunnar (1)
Dalenbäck, Jan-Olof (1)
Lindquist, Sten-Eric (1)
Niklasson, Gunnar A, ... (1)
Wen, Rui-Tao (1)
Azens, A (1)
Azens, Andris (1)
Avendaño Soto, Esteb ... (1)
Georén, Peter (1)
Kish, LB (1)
Li, Shuyi (1)
Marsal, R. (1)
Aegerter, Michel (1)
Skarp, Kent (1)
Herrero, J (1)
Hosono, Hideo (1)
Ribbing, Carl-Gustaf (1)
visa färre...
Lärosäte
Uppsala universitet (48)
Högskolan Dalarna (3)
Linköpings universitet (1)
Språk
Engelska (48)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Teknik (20)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy