SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Green Charlotte J) ;spr:eng"

Sökning: WFRF:(Green Charlotte J) > Engelska

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elsik, Christine G., et al. (författare)
  • The Genome Sequence of Taurine Cattle : A Window to Ruminant Biology and Evolution
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 324:5926, s. 522-528
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
  •  
2.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
3.
  • Block, Keith I., et al. (författare)
  • Designing a broad-spectrum integrative approach for cancer prevention and treatment
  • 2015
  • Ingår i: Seminars in Cancer Biology. - : Academic Press. - 1044-579X .- 1096-3650. ; 35, s. S276-S304
  • Forskningsöversikt (refereegranskat)abstract
    • Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broadspectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered. (C) 2015 The Authors. Published by Elsevier Ltd.
  •  
4.
  • Xu, Jin, et al. (författare)
  • Sex-Specific Metabolic Pathways Were Associated with Alzheimer's Disease (AD) Endophenotypes in the European Medical Information Framework for AD Multimodal Biomarker Discovery Cohort
  • 2021
  • Ingår i: Biomedicines. - : MDPI. - 2227-9059. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: physiological differences between males and females could contribute to the development of Alzheimer's Disease (AD). Here, we examined metabolic pathways that may lead to precision medicine initiatives.METHODS: We explored whether sex modifies the association of 540 plasma metabolites with AD endophenotypes including diagnosis, cerebrospinal fluid (CSF) biomarkers, brain imaging, and cognition using regression analyses for 695 participants (377 females), followed by sex-specific pathway overrepresentation analyses, APOE ε4 stratification and assessment of metabolites' discriminatory performance in AD.RESULTS: In females with AD, vanillylmandelate (tyrosine pathway) was increased and tryptophan betaine (tryptophan pathway) was decreased. The inclusion of these two metabolites (area under curve (AUC) = 0.83, standard error (SE) = 0.029) to a baseline model (covariates + CSF biomarkers, AUC = 0.92, SE = 0.019) resulted in a significantly higher AUC of 0.96 (SE = 0.012). Kynurenate was decreased in males with AD (AUC = 0.679, SE = 0.046).CONCLUSIONS: metabolic sex-specific differences were reported, covering neurotransmission and inflammation pathways with AD endophenotypes. Two metabolites, in pathways related to dopamine and serotonin, were associated to females, paving the way to personalised treatment.
  •  
5.
  • Green, Charlotte J., et al. (författare)
  • Studying non-alcoholic fatty liver disease : the ins and outs of in vivo, ex vivo and in vitro human models
  • 2020
  • Ingår i: Hormone Molecular Biology and Clinical Investigation. - : Walter de Gruyter GmbH. - 1868-1883 .- 1868-1891. ; 41:1
  • Forskningsöversikt (refereegranskat)abstract
    • The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing. Determining the pathogenesis and pathophysiology of human NAFLD will allow for evidence-based prevention strategies, and more targeted mechanistic investigations. Various in vivo, ex situ and in vitro models may be utilised to study NAFLD; but all come with their own specific caveats. Here, we review the human-based models and discuss their advantages and limitations in regards to studying the development and progression of NAFLD. Overall, in vivo whole-body human studies are advantageous in that they allow for investigation within the physiological setting, however, limited accessibility to the liver makes direct investigations challenging. Non-invasive imaging techniques are able to somewhat overcome this challenge, whilst the use of stable-isotope tracers enables mechanistic insight to be obtained. Recent technological advances (i.e. normothermic machine perfusion) have opened new opportunities to investigate whole-organ metabolism, thus ex situ livers can be investigated directly. Therefore, investigations that cannot be performed in vivo in humans have the potential to be undertaken. In vitro models offer the ability to perform investigations at a cellular level, aiding in elucidating the molecular mechanisms of NAFLD. However, a number of current models do not closely resemble the human condition and work is ongoing to optimise culturing parameters in order to recapitulate this. In summary, no single model currently provides insight into the development, pathophysiology and progression across the NAFLD spectrum, each experimental model has limitations, which need to be taken into consideration to ensure appropriate conclusions and extrapolation of findings are made.
  •  
6.
  • Nikolaou, Nikolaos, et al. (författare)
  • AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease.
  • 2019
  • Ingår i: Metabolism: clinical and experimental. - : Elsevier BV. - 1532-8600. ; 99, s. 67-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. Steroid hormones and bile acids are potent regulators of hepatic carbohydrate and lipid metabolism. Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates steroid hormones and catalyzes a fundamental step in bile acid synthesis.Human liver biopsies were obtained from 34 obese patients and AKR1D1 mRNA expression levels were measured using qPCR. Genetic manipulation of AKR1D1 was performed in human HepG2 and Huh7 liver cell lines. Metabolic assessments were made using transcriptome analysis, western blotting, mass spectrometry, clinical biochemistry, and enzyme immunoassays.In human liver biopsies, AKR1D1 expression decreased with advancing steatosis, fibrosis and inflammation. Expression was decreased in patients with type 2 diabetes. In human liver cell lines, AKR1D1 knockdown decreased primary bile acid biosynthesis and steroid hormone clearance. RNA-sequencing identified disruption of key metabolic pathways, including insulin action and fatty acid metabolism. AKR1D1 knockdown increased hepatocyte triglyceride accumulation, insulin sensitivity, and glycogen synthesis, through increased de novo lipogenesis and decreased β-oxidation, fueling hepatocyte inflammation. Pharmacological manipulation of bile acid receptor activation prevented the induction of lipogenic and carbohydrate genes, suggesting that the observed metabolic phenotype is driven through bile acid rather than steroid hormone availability.Genetic manipulation of AKR1D1 regulates the metabolic phenotype of human hepatoma cell lines, driving steatosis and inflammation. Taken together, the observation that AKR1D1 mRNA is down-regulated with advancing NAFLD suggests that it may have a crucial role in the pathogenesis and progression of the disease.
  •  
7.
  • Green, Charlotte J., et al. (författare)
  • Use of Akt inhibitor and a drug-resistant mutant validates a critical role for protein kinase B/Akt in the insulin-dependent regulation of glucose and system A amino acid uptake
  • 2008
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 283:41, s. 27653-27667
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein kinase B (PKB)/Akt has been strongly implicated in the insulin-dependent stimulation of GLUT4 translocation and glucose transport in skeletal muscle and fat cells. Recently an allosteric inhibitor of PKB (Akti) that selectively targets PKB alpha and -beta was reported, but as yet its precise mechanism of action or ability to suppress key insulin-regulated events such as glucose and amino acid uptake and glycogen synthesis in muscle cells has not been reported. We show here that Akti ablates the insulin-dependent regulation of these processes in L6 myotubes at submicromolar concentrations and that inhibition correlates tightly with loss of PKB activation/phosphorylation. Similar findings were obtained using 3T3-L1 adipocytes. Akti did not inhibit IRS1 tyrosine phosphorylation, phosphatidylinositol 3-kinase signaling, or activation of Erks, ribosomal S6 kinase, or atypical protein kinases C but significantly impaired regulation of downstream PKB targets glycogen synthase kinase-3 and AS160. Akti-mediated inhibition of PKB requires an intact kinase pleckstrin homology domain but does not involve suppression of 3-phosphoinositide binding to this domain. Importantly, we have discovered that Akti inhibition is critically dependent upon a solvent-exposed tryptophan residue (Trp-80) that is present within the pleckstrin homology domain of all three PKB isoforms and whose mutation to an alanine (PKBW80A) yields an Akti-resistant kinase. Cellular expression of PKBW80A antagonized the Akti-mediated inhibition of glucose and amino acid uptake. Our findings support a critical role for PKB in the hormonal regulation of glucose and system A amino acid uptake and indicate that use of Akti and expression of the drug-resistant kinase will be valuable tools in delineating cellular PKB functions.
  •  
8.
  • Hodson, Leanne, et al. (författare)
  • Using total plasma triacylglycerol to assess hepatic de novo lipogenesis as an alternative to VLDL triacylglycerol
  • 2020
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 125:3, s. 211-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hepatic de novo lipogenesis (DNL) is ideally measured in very low-density lipoprotein (VLDL)-triacylglycerol (TAG). In the fasting state, the majority of plasma TAG typically represents VLDL-TAG; however, the merits of measuring DNL in total plasma TAG have not been assessed. This study aimed to assess the performance of DNL measured in VLDL-TAG (DNLVLDL-TAG) compared to that measured in total plasma TAG (DNLPlasma-TAG).Methods: Using deuterated water, newly synthesised palmitate was determined in fasting plasma VLDL-TAG and total TAG in 63 subjects taking part in multiple studies resulting in n = 123 assessments of DNL (%new palmitate of total palmitate). Subjects were split into tertiles to investigate if DNLPlasma-TAG could correctly classify subjects having ‘high’ (top tertile) and ‘low’ (bottom tertile) DNL. Repeatability was assessed in a subgroup (n = 16) with repeat visits.Results: DNLVLDL-TAG was 6.8% (IQR 3.6–10.7%) and DNLPlasma-TAG was 7.5% (IQR 4.0%−11.0%), and the correlation between the methods was rs = 0.62 (p < 0.0001). Bland–Altman plots demonstrated similar performance (mean difference 0.81%, p = 0.09); however, the agreement interval was wide (−9.6% to 11.2%). Compared to DNLVLDL-TAG, 54% of subjects with low DNL were correctly classified, whilst 66% of subjects with high DNL were correctly classified using DNLPlasma-TAG. Repeatability was acceptable (i.e. not different) at the group level, but the majority of subjects had an intra-individual variability over 25%.Conclusion: DNL in total plasma TAG performed similarly to DNL in VLDL-TAG at the group level, but there was large variability at the individual level. We suggest that plasma TAG could be useful for comparing DNL between groups.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Antonarakis, Stylian ... (2)
Guigo, Roderic (2)
Wheeler, David A (2)
Blennow, Kaj, 1958 (1)
Zhu, Bin (1)
Marschall, Hanns-Ulr ... (1)
visa fler...
Zetterberg, Henrik, ... (1)
Tsolaki, Magda (1)
Wallin, Anders, 1950 (1)
Nikolaev, Sergey (1)
Dabrosin, Charlotta (1)
Lindblad-Toh, Kersti ... (1)
Kettunen, Petronella (1)
Vandenberghe, Rik (1)
Dermitzakis, Emmanou ... (1)
Estivill, Xavier (1)
Flicek, Paul (1)
Valencia, Alfonso (1)
Sweedler, Jonathan V ... (1)
Elhaik, Eran (1)
Zhang, Nancy R. (1)
Enroth, Stefan (1)
Wadelius, Claes (1)
Scheltens, Philip (1)
Teunissen, Charlotte ... (1)
Ahola, Virpi (1)
Göransson, Olga (1)
Sakamoto, Kei (1)
Kokocinski, Felix (1)
Southey, Bruce R. (1)
Rodriguez-Zas, Sandr ... (1)
Emanuelsson, Olof (1)
Molinuevo, José Luis (1)
Liu, Jun (1)
Kumar, Dinesh (1)
Alcolea, Daniel (1)
Martínez-Lage, Pablo (1)
Lleó, Alberto (1)
Alexander, Lee (1)
Pachter, Lior (1)
Lopez-Bigas, Nuria (1)
Haussler, David (1)
de Jong, Pieter J. (1)
Lander, Eric S. (1)
Wallerman, Ola (1)
Rami, Lorena (1)
Whelan, Simon (1)
Jiang, Nan (1)
Frisoni, Giovanni B. (1)
Gnerre, Sante (1)
visa färre...
Lärosäte
Uppsala universitet (4)
Göteborgs universitet (2)
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
Örebro universitet (1)
Linköpings universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy