SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gregersen Peter K.) ;hsvcat:3"

Sökning: WFRF:(Gregersen Peter K.) > Medicin och hälsovetenskap

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Langefeld, Carl D., et al. (författare)
  • Transancestral mapping and genetic load in systemic lupus erythematosus
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (similar to 50% of these regions have multiple independent associations); these include 24 novel SLE regions (P < 5 x 10(-8)), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.
  •  
2.
  • Mayes, Maureen D, et al. (författare)
  • Immunochip analysis identifies multiple susceptibility Loci for systemic sclerosis.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 94:1, s. 47-61
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
  •  
3.
  • Gorlova, Olga, et al. (författare)
  • Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (IcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32x10(-12), OR = 0.75). Also, rs12540874 in GRB10 gene (P = 1.27 x 10(-6), OR = 1.15) and rs11047102 in SOX5 gene (P = 1.39x10(-7), OR = 1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79x10(-61), OR = 2.48), in the HLA-DPA1/B1 loci with ATA (P = 4.57x10(-76), OR = 8.84), and in NOTCH4 with ACA P = 8.84x10(-21), OR = 0.55) and ATA (P = 1.14x10(-8), OR = 0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and autoantibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc.
  •  
4.
  • Okada, Yukinori, et al. (författare)
  • Genetics of rheumatoid arthritis contributes to biology and drug discovery
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 506:7488, s. 376-381
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)(1). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating similar to 10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2-4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation(5), cis-acting expression quantitative trait loci(6) and pathway analyses(7-9)-as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes-to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
  •  
5.
  • Radstake, Timothy R. D. J., et al. (författare)
  • Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:5, s. 71-426
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs that leads to profound disability and premature death. To identify new SSc susceptibility loci, we conducted the first genome-wide association study in a population of European ancestry including a total of 2,296 individuals with SSc and 5,171 controls. Analysis of 279,621 autosomal SNPs followed by replication testing in an independent case-control set of European ancestry (2,753 individuals with SSc (cases) and 4,569 controls) identified a new susceptibility locus for systemic sclerosis at CD247 (1q22-23, rs2056626, P = 2.09 x 10(-7) in the discovery samples, P = 3.39 x 10(-9) in the combined analysis). Additionally, we confirm and firmly establish the role of the MHC (P = 2.31 x 10(-18)), IRF5 (P = 1.86 x 10(-13)) and STAT4 (P = 3.37 x 10(-9)) gene regions as SSc genetic risk factors.
  •  
6.
  • Matuozzo, Daniela, et al. (författare)
  • Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19.
  • 2023
  • Ingår i: Genome medicine. - 1756-994X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in~80% of cases.We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1×10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1×10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4×10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7×10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68×10-5).Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60years old.
  •  
7.
  • Olofsson, Peder S., et al. (författare)
  • Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase
  • 2016
  • Ingår i: Nature Biotechnology. - : Nature Publishing Group. - 1087-0156 .- 1546-1696. ; 34:10, s. 1066-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure regulation is known to be maintained by a neuro-endocrine circuit, but whether immune cells contribute to blood pressure homeostasis has not been determined. We previously showed that CD4(+) T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of the vasorelaxant acetylcholine, relay neural signals(1). Here we show that these CD4(+)CD44(hi)CD62L(Io) T helper cells by gene expression are a distinct T-cell population defined by ChAT (CD4 T-ChAT). Mice lacking ChAT expression in CD4(+) cells have elevated arterial blood pressure, compared to littermate controls. Jurkat T cells overexpressing ChAT (JT(ChAT)) decreased blood pressure when infused into mice. Co-incubation of JT(ChAT) and endothelial cells increased endothelial cell levels of phosphorylated endothelial nitric oxide synthase, and of nitrates and nitrites in conditioned media, indicating increased release of the potent vasorelaxant nitric oxide. The isolation and characterization of CD4 T-ChAT cells will enable analysis of the role of these cells in hypotension and hypertension, and may suggest novel therapeutic strategies by targeting cell-mediated vasorelaxation.
  •  
8.
  • Franke, Lude, et al. (författare)
  • Association analysis of copy numbers of FC-gamma receptor genes for rheumatoid arthritis and other immune-mediated phenotypes
  • 2016
  • Ingår i: European Journal of Human Genetics. - : Nature Publishing Group. - 1018-4813 .- 1476-5438. ; 24:2, s. 263-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Segmental duplications (SDs) comprise about 5% of the human genome and are enriched for immune genes. SD loci often show copy numbers variations (CNV), which are difficult to tag with genotyping methods. CNV in the Fc gamma receptor region (FCGR) has been suggested to be associated with rheumatic diseases. The objective of this study was to delineate association of FCGR-CNV with rheumatoid arthritis (RA), coeliac disease and Inflammatory bowel disease incidence. We developed a method to accurately quantify CNV in SD loci based on the intensity values from the Immunochip platform and applied it to the FCGR locus. We determined the method's validity using three independent assays: segregation analysis in families, arrayCGH, and whole genome sequencing. Our data showed the presence of two separate CNVs in the FCGR locus. The first region encodes FCGR2A, FCGR3A and part of FCGR2C gene, the second encodes another part of FCGR2C, FCGR3B and FCGR2B. Analysis of CNV status in 4578 individuals with RA and 5457 controls indicated association of duplications in the FCGR3B gene in antibody-negative RA (P = 0.002, OR = 1.43). Deletion in FCGR3B was associated with increased risk of antibody-positive RA, consistently with previous reports (P = 0.023, OR = 1.23). A clear genotype-phenotype relationship was observed: CNV polymorphisms of the FCGR3A gene correlated to CD16A expression (encoded by FCGR3A) on CD8 T-cells. In conclusion, our method allows determining the CNV status of the FCGR locus, we identified association of CNV in FCGR3B to RA and showed a functional relationship between CNV in the FCGR3A gene and CD16A expression.
  •  
9.
  • Gateva, Vesela, et al. (författare)
  • A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41:11, s. 1228-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 x 10(-8)): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P< or = 1 x 10(-5). A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 x 10(-3)) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.
  •  
10.
  • Ishigaki, Kazuyoshi, et al. (författare)
  • Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:11, s. 1640-1651
  • Tidskriftsartikel (refereegranskat)abstract
    • Rheumatoid arthritis (RA) is a highly heritable complex disease with unknown etiology. Multi-ancestry genetic research of RA promises to improve power to detect genetic signals, fine-mapping resolution and performances of polygenic risk scores (PRS). Here, we present a large-scale genome-wide association study (GWAS) of RA, which includes 276,020 samples from five ancestral groups. We conducted a multi-ancestry meta-analysis and identified 124 loci (P < 5 × 10−8), of which 34 are novel. Candidate genes at the novel loci suggest essential roles of the immune system (for example, TNIP2 and TNFRSF11A) and joint tissues (for example, WISP1) in RA etiology. Multi-ancestry fine-mapping identified putatively causal variants with biological insights (for example, LEF1). Moreover, PRS based on multi-ancestry GWAS outperformed PRS based on single-ancestry GWAS and had comparable performance between populations of European and East Asian ancestries. Our study provides several insights into the etiology of RA and improves the genetic predictability of RA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (21)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (22)
Författare/redaktör
Gregersen, Peter K. (22)
Rantapää-Dahlqvist, ... (12)
Martin, Javier (10)
Klareskog, Lars (8)
Padyukov, Leonid (8)
Worthington, Jane (8)
visa fler...
Raychaudhuri, Soumya (7)
Zhernakova, Alexandr ... (6)
Behrens, Timothy W (5)
Huizinga, Tom W. J. (5)
Gonzalez-Gay, Miguel ... (5)
Criswell, Lindsey A. (4)
Bowes, John (4)
Graham, Robert R (4)
Lee, Annette T. (4)
Eyre, Steve (4)
Gunnarsson, Iva (3)
Witte, Torsten (3)
Ortego-Centeno, Norb ... (3)
Hammarström, Lennart (3)
Rönnblom, Lars (3)
Bae, Sang-Cheol (3)
Bang, So-Young (3)
Reveille, John D. (3)
Edberg, Jeffrey C. (3)
Kimberly, Robert P. (3)
Rahman, Proton (3)
Hesselstrand, Roger (3)
Herrick, Ariane (3)
Beretta, Lorenzo (3)
Airó, Paolo (3)
Radstake, Timothy R ... (3)
Gladman, Dafna D. (3)
Amos, Christopher I. (3)
Seldin, Michael F (3)
Barton, Anne (3)
Wijmenga, Cisca (3)
van der Helm-van Mil ... (3)
Ärlestig, Lisbeth (3)
Martin, Jose-Ezequie ... (3)
Gorlova, Olga (3)
Carreira, Patricia (3)
Kreuter, Alexander (3)
Voskuyl, Alexandre E ... (3)
Schuerwegh, Annemie ... (3)
Tan, Filemon K. (3)
Arnett, Frank C. (3)
Assassi, Shervin (3)
Mayes, Maureen D. (3)
Rodríguez-Rodríguez, ... (3)
visa färre...
Lärosäte
Karolinska Institutet (17)
Umeå universitet (14)
Lunds universitet (9)
Uppsala universitet (4)
Göteborgs universitet (3)
Linköpings universitet (3)
visa fler...
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy