SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Greve A.) ;pers:(Aalto Susanne 1964)"

Sökning: WFRF:(Greve A.) > Aalto Susanne 1964

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gonzalez-Alfonso, E., et al. (författare)
  • Herschel observations of water vapour in Markarian 231
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L43
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ultra luminous infrared galaxy (ULIRG) Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (Eupper = 640 K) line detected at a 4 sigma level, within the Herschel/SPIRE wavelength range (190
  •  
2.
  • van der Werf, P.P., et al. (författare)
  • Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L42
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.
  •  
3.
  • Rosenberg, M. J. F., et al. (författare)
  • The Herschel Comprehensive (U)lirg Emission Survey (Hercules): Co Ladders, Fine Structure Lines, and Neutral Gas Cooling
  • 2015
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 801:2
  • Tidskriftsartikel (refereegranskat)abstract
    • (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 mu m) luminosities (L-LIRG > 10(11) L-circle dot and L-ULIRG > 10(12) L-circle dot). The Herschel Comprehensive ULIRG Emission Survey (PI: van derWerf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10(11)L(circle dot)
  •  
4.
  • Greve, T. R., et al. (författare)
  • Star Formation Relations and CO-Spectral Line Energy Distributions Across the J-Ladder and Redshift
  • 2014
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 794:2, s. Art. no. 142-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present FIR [50-300 mu m]-CO luminosity relations (i.e., log L-FIR = alpha log L'(CO) + beta) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z 10(11) L-circle dot) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations (i.e., a similar or equal to 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (beta similar to 2). In the simplest physical scenario, this is expected from the (also) linear FIR-(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (similar to 100 K) and dense (>10(4) cm(-3)) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions, which remain highly excited from J = 6-5 up to J = 13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.
  •  
5.
  • Krips, M., et al. (författare)
  • ACA CI observations of the starburst galaxy NGC 253
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592:L3
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Carbon monoxide (CO) is widely used as a tracer of the molecular gas in almost all types of environments. However, several shortcomings of CO complicate usaging it as H-2 tracer, such as its optical depth effects, the dependence of its abundance on metallicity, or its susceptibility to dissociation in highly irradiated regions. Neutral carbon emission has been proposed to overcome some of these shortcomings and hence to help revealing the limits of CO as a measure of the molecular gas. Aims. We aim to study the general characteristics of the spatially and spectrally resolved carbon line emission in a variety of extragalactic sources and evaluate its potential as complementary H-2 tracer to CO. Methods. We used the Atacama Compact Array to map the [CI](P-3(1)-P-3(0)) line emission in the nearby starburst galaxy NGC 253 at unprecedented angular resolution (similar to 3 ''). This is the first well-resolved interferometric [CI] map of an extragalactic source. Results. We have detected the [CI] line emission at high significance levels along the central disk of NGC 253 and its edges where expanding shells have previously been found in CO. Globally, the distribution of the [CI] line emission strongly resembles that of CO, confirming the results of previous Galactic surveys that [CI] traces the same molecular gas as CO. However, we also identify a significant increase of [CI] line emission with respect to CO in (some of) the outflow or shocked regions of NGC 253, namely the bipolar outflow emerging from the nucleus. A first-order estimate of the [CI] column densities indicates abundances of [CI] that are very similar to the abundance of CO in NGC 253. Interestingly, we find that the [CI] line is marginally optically thick within the disk. Conclusions. The enhancement of the [CI]/CO line ratios (similar to 0.4-0.6) with respect to Galactic values (
  •  
6.
  • Aalto, Susanne, 1964, et al. (författare)
  • Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high resolution (0.'' 4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (nu(2) = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 x 10(13) L-circle dot kpc(-2). These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, nu(2) = 1, lines of HCN are excited by intense 14 mu m mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H-2 column densities exceed 10(24) cm(-2). It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (. = 0), J = 3-2 and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self-and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions-possibly in the form of in-or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
  •  
7.
  • Falstad, Niklas, 1987, et al. (författare)
  • CON-quest: Searching for the most obscured galaxy nuclei
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact (r < 100 pc) and dusty nuclei. The high extinction associated with large column densities of gas and dust toward these objects render them hard to detect at many wavelengths. The intense infrared radiation arising from warm dust in these sources can provide a significant fraction of the bolometric luminosity of the galaxy and is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib); the brightest emission is found in compact obscured nuclei (CONs; ςHCN-vib > 1 L⊙ pc-2 in the J = 3-2 transition). However, there have been no systematic searches for CONs, and it is unknown how common they are. Aims. We aim to establish how common CONs are in the local Universe (z < 0.08), and whether their prevalence depends on the luminosity or other properties of the host galaxy. Methods. We conducted an Atacama Large Millimeter/submillimeter Array survey of the rotational J = 3-2 transition of HCN-vib in a volume-limited sample of 46 far-infrared luminous galaxies. Results. Compact obscured nuclei are identified in 38-13+18% of the ULIRGs, 21-6+12% of the LIRGs, and 0-0+9% of the lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 μm to 60 μm flux density ratios (f25/f60) in CONs (with the exception of one galaxy, NGC 4418) compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7 μm), but similar polycyclic aromatic hydrocarbon equivalent widths (EQW6.2 μm) compared to other galaxies. Along with signatures of molecular inflows seen in the far-infrared in most CONs, submillimeter observations also reveal compact, often collimated, outflows. Conclusions. In the local Universe, CONs are primarily found in (U)LIRGs, in which they are remarkably common. As such systems are often highly disturbed, inclinations are difficult to estimate, and high-resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. Further studies of the in- A nd outflow properties of CONs should also be conducted to investigate how these are connected to each other and to the CON phenomenon. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated (EQW6.2 μm and s9.7 μm) are consistent with the notion that large dust columns gradually shift the radiation from the hot nucleus to longer wavelengths, making the mid- A nd far-infrared "photospheres"significantly cooler than the interior regions. Finally, to assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.
  •  
8.
  • Falstad, Niklas, 1987, et al. (författare)
  • Hidden or missing outflows in highly obscured galaxy nuclei?
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the nuclear growth and feedback processes in galaxies requires investigating their often obscured central regions. One way to do this is to use (sub)millimeter line emission from vibrationally excited HCN (HCN-vib), which is thought to trace warm and highly enshrouded galaxy nuclei. It has been suggested that the most intense HCN-vib emission from a galaxy is connected to a phase of nuclear growth that occurs before the nuclear feedback processes have been fully developed. Aims. We aim to investigate if there is a connection between the presence of strong HCN-vib emission and the development of feedback in (ultra)luminous infrared galaxies ((U)LIRGs). Methods. We collected literature and archival data to compare the luminosities of rotational lines of HCN-vib, normalized to the total infrared luminosity, to the median velocities of 119 μm OH absorption lines, potentially indicating outflows, in a total of 17 (U)LIRGs. Results. The most HCN-vib luminous systems all lack signatures of significant molecular outflows in the far-infrared OH absorption lines. However, at least some of the systems with bright HCN-vib emission have fast and collimated outflows that can be seen in spectral lines at longer wavelengths, including in millimeter emission lines of CO and HCN (in its vibrational ground state) and in radio absorption lines of OH. Conclusions. We conclude that the galaxy nuclei with the highest L HCN-vib /L IR do not drive wide-angle outflows that are detectable using the median velocities of far-infrared OH absorption lines. This is possibly because of an orientation effect in which sources oriented in such a way that their outflows are not along our line of sight also radiate a smaller proportion of their infrared luminosity in our direction. It could also be that massive wide-angle outflows destroy the deeply embedded regions responsible for bright HCN-vib emission, so that the two phenomena cannot coexist. This would strengthen the idea that vibrationally excited HCN traces a heavily obscured stage of evolution before nuclear feedback mechanisms are fully developed.
  •  
9.
  • Martin, S., et al. (författare)
  • ALCHEMI, an ALMA Comprehensive High-resolution Extragalactic Molecular Inventory: Survey presentation and first results from the ACA array
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The interstellar medium is the locus of physical processes affecting the evolution of galaxies which drive or are the result of star formation activity, supermassive black hole growth, and feedback. The resulting physical conditions determine the observable chemical abundances that can be explored through molecular emission observations at millimeter and submillimeter wavelengths. Aims. Our goal is to unveiling the molecular richness of the central region of the prototypical nearby starburst galaxy NGC 253 at an unprecedented combination of sensitivity, spatial resolution, and frequency coverage. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA), covering a nearly contiguous 289 GHz frequency range between 84.2 and 373.2 GHz, to image the continuum and spectral line emission at 1.6″(∼28 pc) resolution down to a sensitivity of 30 - 50 mK. This article describes the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory (ALCHEMI) large program. We focus on the analysis of the spectra extracted from the 15″ (∼255 pc) resolution ALMA Compact Array data. Results. We modeled the molecular emission assuming local thermodynamic equilibrium with 78 species being detected. Additionally, multiple hydrogen and helium recombination lines are identified. Spectral lines contribute 5 to 36% of the total emission in frequency bins of 50 GHz. We report the first extragalactic detections of C2H5OH, HOCN, HC3HO, and several rare isotopologues. Isotopic ratios of carbon, oxygen, sulfur, nitrogen, and silicon were measured with multiple species. Concluison. Infrared pumped vibrationaly excited HCN, HNC, and HC3N emission, originating in massive star formation locations, is clearly detected at low resolution, while we do not detect it for HCO+. We suggest high temperature conditions in these regions driving a seemingly "carbon-rich"chemistry which may also explain the observed high abundance of organic species close to those in Galactic hot cores. The Lvib/LIR ratio was used as a proxy to estimate a 3% contribution from the proto super star cluster to the global infrared emission. Measured isotopic ratios with high dipole moment species agree with those within the central kiloparsec of the Galaxy, while those derived from 13C/18O are a factor of five larger, confirming the existence of multiple interstellar medium components within NGC 253 with different degrees of nucleosynthesis enrichment. The ALCHEMI data set provides a unique template for studies of star-forming galaxies in the early Universe.
  •  
10.
  • Martin, S., et al. (författare)
  • The Submillimeter Array 1.3 mm line survey of Arp 220
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 527:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Though Arp 220 is the closest and by far the most studied ULIRG, a discussion is still ongoing on the main power source driving its huge infrared luminosity. Aims. To study the molecular composition of Arp 220 in order to find chemical fingerprints associated with the main heating mechanisms within its nuclear region. Methods. We present the first aperture synthesis unbiased spectral line survey toward an extragalactic object. The survey covered the 40 GHz frequency range between 202 and 242 GHz of the 1.3 mm atmospheric window. Results. We find that 80% of the observed band shows molecular emission, with 73 features identified from 15 molecular species and 6 isotopologues. The C-13 isotopic substitutions of HC3N and transitions from (H2O)-O-18, (SiO)-Si-29, and CH2CO are detected for the first time outside the Galaxy. No hydrogen recombination lines have been detected in the 40 GHz window covered. The emission feature at the transition frequency of H31 alpha line is identified to be an HC3N molecular line, challenging the previous detections reported at this frequency. Within the broad observed band, we estimate that 28% of the total measured flux is due to the molecular line contribution, with CO only contributing 9% to the overall flux. We present maps of the CO emission at a resolution of 2.9 '' x 1.9 '' which, though not enough to resolve the two nuclei, recover all the single-dish flux. The 40 GHz spectral scan has been modelled assuming LTE conditions and abundances are derived for all identified species. Conclusions. The chemical composition of Arp 220 shows no clear evidence of an AGN impact on the molecular emission but seems indicative of a purely starburst-heated ISM. The overabundance of H2S and the low isotopic ratios observed suggest a chemically enriched environment by consecutive bursts of star formation, with an ongoing burst at an early evolutionary stage. The large abundance of water (similar to 10(-5)), derived from the isotopologue (H2O)-O-18, as well as the vibrationally excited emission from HC3N and CH3CN are claimed to be evidence of massive star forming regions within Arp 220. Moreover, the observations put strong constraints on the compactness of the starburst event in Arp 220. We estimate that such emission would require similar to 2-8 x 10(6) hot cores, similar to those found in the Sgr B2 region in the Galactic center, concentrated within the central 700 pc of Arp 220.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy