SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grinberg Daniel) ;lar1:(lu)"

Sökning: WFRF:(Grinberg Daniel) > Lunds universitet

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
2.
  • Rehling, Daniel, et al. (författare)
  • Structural and biochemical investigation of class I ribonucleotide reductase from the hyperthermophile Aquifex aeolicus
  • 2022
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 61:2, s. 92-106
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotide reductase (RNR) is an essential enzyme with a complex mechanism of allosteric regulation found innearly all living organisms. Class I RNRs are composed of two proteins, a large α-subunit (R1) and a smaller β-subunit (R2) that exist as homodimers, that combine to form an active heterotetramer. Aquifex aeolicus is a hyperthermophilic bacterium with an unusual RNR encoding a 346-residue intein in the DNA sequence encoding its R2 subunit. We present the first structures of the A. aeolicus R1 and R2 (AaR1 and AaR2, respectively) proteins as well as the biophysical and biochemical characterization of active and inactive A. aeolicus RNR. While the active oligomeric state and activity regulation of A. aeolicus RNR are similar to those of other characterized RNRs, the X-ray crystal structures also reveal distinct features and adaptations. Specifically, AaR1 contains a β-hairpin hook structure at the dimer interface, which has an interesting π stacking interaction absent in other members of the NrdAh subclass, and its ATP cone houses two ATP molecules. We determined structures of two AaR2 proteins: one purified from a construct lacking the intein (AaR2) and a second purified from a construct including the intein sequence (AaR2_genomic). These structures in the context of metal content analysis and activity data indicate that AaR2_genomic displays much higher iron occupancy and activity compared to AaR2, suggesting that the intein is important for facilitating complete iron incorporation, particularly in the Fe2 site of the mature R2 protein, which may be important for the survival of A. aeolicus in low-oxygen environments.
  •  
3.
  • Benetó, Noelia, et al. (författare)
  • Generation of two compound heterozygous HGSNAT-mutated lines from healthy induced pluripotent stem cells using CRISPR/Cas9 to model Sanfilippo C syndrome
  • 2019
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1876-7753 .- 1873-5061. ; 41
  • Tidskriftsartikel (refereegranskat)abstract
    • Sanfilippo C syndrome (Mucopolysaccharidosis IIIC) is a rare lysosomal storage disorder caused by mutations in the HGSNAT gene. It is characterized by a progressive and severe neurodegeneration, for which there is no treatment available. Here, we report the generation of two HGSNAT-mutated cell lines from a healthy human induced pluripotent stem cell (hiPSC) line using CRISPR/Cas9 editing. These novel cell lines have a normal karyotype, express pluripotency specific markers and have the capability to differentiate into all three germ layers in vitro. These hiPSC lines will be useful for the generation of in vitro models of Sanfilippo C syndrome.
  •  
4.
  •  
5.
  • Benetó, Noelia, et al. (författare)
  • Genome Editing Using Cas9-gRNA Ribonucleoprotein in Human Pluripotent Stem Cells for Disease Modeling
  • 2022
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer US. - 1940-6029 .- 1064-3745. ; 2549, s. 409-425
  • Bokkapitel (refereegranskat)abstract
    • The discovery that the CRISPR/Cas9 system could be used for genome editing purposes represented a major breakthrough in the field. This advancement has notably facilitated the introduction or correction of disease-specific mutations in healthy or disease stem cell lines respectively; therefore, easing disease modeling studies in combination with differentiation protocols. For many years, variability in the genetic background of different stem cell lines has been a major burden to specifically identify phenotypes arising uniquely from the presence of the mutation and not from differences in other genomic regions. Here, we provide a complete protocol to introduce random indels in human wild type pluripotent stem cells using CRISPR/Cas9 in order to generate clonal lines with potential pathogenic alterations in any gene of interest. In this protocol, we use transfection of a ribonucleoprotein complex to diminish the risk of off-target effects, and select clonal lines with promising indels to obtain disease induced pluripotent stem cell lines.
  •  
6.
  • Benetó, Noelia, et al. (författare)
  • Neuronal and Astrocytic Differentiation from Sanfilippo C Syndrome iPSCs for Disease Modeling and Drug Development
  • 2020
  • Ingår i: Journal of Clinical Medicine. - : MDPI AG. - 2077-0383. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Sanfilippo syndrome type C (mucopolysaccharidosis IIIC) is an early-onset neurodegenerative lysosomal storage disorder, which is currently untreatable. The vast majority of studies focusing on disease mechanisms of Sanfilippo syndrome were performed on non-neural cells or mouse models, which present obvious limitations. Induced pluripotent stem cells (iPSCs) are an efficient way to model human diseases in vitro. Recently developed transcription factor-based differentiation protocols allow fast and efficient conversion of iPSCs into the cell type of interest. By applying these protocols, we have generated new neuronal and astrocytic models of Sanfilippo syndrome using our previously established disease iPSC lines. Moreover, our neuronal model exhibits disease-specific molecular phenotypes, such as increase in lysosomes and heparan sulfate. Lastly, we tested an experimental, siRNA-based treatment previously shown to be successful in patients' fibroblasts and demonstrated its lack of efficacy in neurons. Our findings highlight the need to use relevant human cellular models to test therapeutic interventions and shows the applicability of our neuronal and astrocytic models of Sanfilippo syndrome for future studies on disease mechanisms and drug development.
  •  
7.
  • Benetó, Noelia, et al. (författare)
  • Sanfilippo syndrome : Molecular basis, disease models and therapeutic approaches
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:21
  • Forskningsöversikt (refereegranskat)abstract
    • Sanfilippo syndrome or mucopolysaccharidosis III is a lysosomal storage disorder caused by mutations in genes responsible for the degradation of heparan sulfate, a glycosaminoglycan located in the extracellular membrane. Undegraded heparan sulfate molecules accumulate within lysosomes leading to cellular dysfunction and pathology in several organs, with severe central nervous system degeneration as the main phenotypical feature. The exact molecular and cellular mechanisms by which impaired degradation and storage lead to cellular dysfunction and neuronal degeneration are still not fully understood. Here, we compile the knowledge on this issue and review all available animal and cellular models that can be used to contribute to increase our understanding of Sanfilippo syndrome disease mechanisms. Moreover, we provide an update in advances regarding the different and most successful therapeutic approaches that are currently under study to treat Sanfilippo syndrome patients and discuss the potential of new tools such as induced pluripotent stem cells to be used for disease modeling and therapy development.
  •  
8.
  • Bimai, Ornella, et al. (författare)
  • Nucleotide binding to the ATP-cone in anaerobic ribonucleotide reductases allosterically regulates activity by modulating substrate binding
  • 2024
  • Ingår i: eLife. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer– tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.
  •  
9.
  • Rozman Grinberg, Inna, et al. (författare)
  • A nucleotide-sensing oligomerization mechanism that controls NrdR-dependent transcription of ribonucleotide reductases
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotide reductase (RNR) is an essential enzyme that catalyzes the synthesis of DNA building blocks in virtually all living cells. NrdR, an RNR-specific repressor, controls the transcription of RNR genes and, often, its own, in most bacteria and some archaea. NrdR senses the concentration of nucleotides through its ATP-cone, an evolutionarily mobile domain that also regulates the enzymatic activity of many RNRs, while a Zn-ribbon domain mediates binding to NrdR boxes upstream of and overlapping the transcription start site of RNR genes. Here, we combine biochemical and cryo-EM studies of NrdR from Streptomyces coelicolor to show, at atomic resolution, how NrdR binds to DNA. The suggested mechanism involves an initial dodecamer loaded with two ATP molecules that cannot bind to DNA. When dATP concentrations increase, an octamer forms that is loaded with one molecule each of dATP and ATP per monomer. A tetramer derived from this octamer then binds to DNA and represses transcription of RNR. In many bacteria - including well-known pathogens such as Mycobacterium tuberculosis - NrdR simultaneously controls multiple RNRs and hence DNA synthesis, making it an excellent target for novel antibiotics development.
  •  
10.
  • Rozman Grinberg, Inna, et al. (författare)
  • Class Id ribonucleotide reductase utilizes a Mn-2(IV,III) cofactor and undergoes large conformational changes on metal loading
  • 2019
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 0949-8257 .- 1432-1327. ; 24:6, s. 863-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Outside of the photosynthetic machinery, high-valent manganese cofactors are rare in biology. It was proposed that a recently discovered subclass of ribonucleotide reductase (RNR), class Id, is dependent on a Mn-2(IV,III) cofactor for catalysis. Class I RNRs consist of a substrate-binding component (NrdA) and a metal-containing radical-generating component (NrdB). Herein we utilize a combination of EPR spectroscopy and enzyme assays to underscore the enzymatic relevance of the Mn-2(IV,III) cofactor in class Id NrdB from Facklamia ignava. Once formed, the Mn-2(IV,III) cofactor confers enzyme activity that correlates well with cofactor quantity. Moreover, we present the X-ray structure of the apo- and aerobically Mn-loaded forms of the homologous class Id NrdB from Leeuwenhoekiella blandensis, revealing a dimanganese centre typical of the subclass, with a tyrosine residue maintained at distance from the metal centre and a lysine residue projected towards the metals. Structural comparison of the apo- and metal-loaded forms of the protein reveals a refolding of the loop containing the conserved lysine and an unusual shift in the orientation of helices within a monomer, leading to the opening of a channel towards the metal site. Such major conformational changes have not been observed in NrdB proteins before. Finally, in vitro reconstitution experiments reveal that the high-valent manganese cofactor is not formed spontaneously from oxygen, but can be generated from at least two different reduced oxygen species, i.e. H2O2 and superoxide (O2 center dot-). Considering the observed differences in the efficiency of these two activating reagents, we propose that the physiologically relevant mechanism involves superoxide.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Sjöberg, Britt-Marie (5)
Lundin, Daniel (3)
Lundin, Daniel, 1965 ... (2)
Hofer, Anders (2)
Berggren, Gustav (2)
Stenmark, Pål (2)
visa fler...
Sahlin, Margareta (2)
Khaw, Kay-Tee (1)
Karlsson, Magnus (1)
Vandenput, Liesbeth, ... (1)
Díez-Pérez, Adolfo (1)
LaCroix, Andrea Z. (1)
Davey Smith, George (1)
Soranzo, Nicole (1)
Ohlsson, Claes, 1965 (1)
Ekström, Simon (1)
Huang, Ping (1)
Ge, Bing (1)
Kwan, Tony (1)
Chen, Shu-Huang (1)
Pastinen, Tomi (1)
Hsu, Li (1)
Peters, Ulrike (1)
Hallmans, Göran (1)
Dunning, Alison M. (1)
Center, Jacqueline R (1)
Eisman, John A (1)
Nguyen, Tuan V (1)
Ahlenius, Henrik (1)
Eriksson, Joel (1)
Ridker, Paul M. (1)
Chasman, Daniel I. (1)
Amin, Najaf (1)
van Duijn, Cornelia ... (1)
Rose, Lynda M (1)
Thorleifsson, Gudmar (1)
Thorsteinsdottir, Un ... (1)
Stefansson, Kari (1)
McGuigan, Fiona E.A. (1)
Mellström, Dan, 1945 (1)
Durbin, Richard (1)
Grundberg, Elin (1)
Hsu, Yi-Hsiang (1)
Melin, Beatrice (1)
Kooperberg, Charles (1)
Magnuson, Ann (1)
Ljunggren, Östen (1)
Wibom, Carl (1)
Gauguier, Dominique (1)
Brandi, Maria Luisa (1)
visa färre...
Lärosäte
Stockholms universitet (4)
Umeå universitet (3)
Uppsala universitet (3)
Göteborgs universitet (1)
Linnéuniversitetet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy