SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Groen Blokhuis Maria M) "

Sökning: WFRF:(Groen Blokhuis Maria M)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Taal, H. Rob, et al. (författare)
  • Common variants at 12q15 and 12q24 are associated with infant head circumference
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 532-538
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.
  •  
2.
  • van der Valk, Ralf J P, et al. (författare)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 24:4, s. 1155-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
  •  
3.
  • Felix, Janine F, et al. (författare)
  • Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.
  • 2016
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:2, s. 389-403
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
  •  
4.
  • Ikram, M. Arfan, et al. (författare)
  • Common variants at 6q22 and 17q21 are associated with intracranial volume
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 539-544
  • Tidskriftsartikel (refereegranskat)abstract
    • During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.
  •  
5.
  • Pappa, Irene, et al. (författare)
  • A genome-wide approach to children's aggressive behavior : The EAGLE consortium.
  • 2016
  • Ingår i: American Journal of Medical Genetics Part B. - : Wiley. - 1552-4841 .- 1552-485X. ; 171:5, s. 562-572
  • Tidskriftsartikel (refereegranskat)abstract
    • Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10-54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10(-8) ). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning. © 2015 Wiley Periodicals, Inc.
  •  
6.
  • Vogelezang, Suzanne, et al. (författare)
  • Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.
  • 2020
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy