SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Groff Tyler D.) ;pers:(Wisniewski John)"

Sökning: WFRF:(Groff Tyler D.) > Wisniewski John

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Currie, Thayne, et al. (författare)
  • No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15 : LkCa 15 bcd are Likely Inner Disk Signals
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 877:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Two studies utilizing sparse aperture-masking (SAM) interferometry and H-alpha differential imaging have reported multiple Jovian companions around the young solar-mass star, LkCa 15 (LkCa 15 bcd): the first claimed direct detection of infant, newly formed planets (protoplanets). We present new near-infrared direct imaging/spectroscopy from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) integral field spectrograph and multi-epoch thermal infrared imaging from Keck/NIRC2 of LkCa 15 at high Strehl ratios. These data provide the first direct imaging look at the same wavelengths and in the same locations where previous studies identified the LkCa 15 protoplanets, and thus offer the first decisive test of their existence. The data do not reveal these planets. Instead, we resolve extended emission tracing a dust disk with a brightness and location comparable to that claimed for LkCa 15 bcd. Forward-models attributing this signal to orbiting planets are inconsistent with the combined SCExAO/CHARIS and Keck/NIRC2 data. An inner disk provides a more compelling explanation for the SAM detections and perhaps also the claimed H-alpha detection of LkCa 15 b. We conclude that there is currently no clear, direct evidence for multiple protoplanets orbiting LkCa 15, although the system likely contains at least one unseen Jovian companion. To identify Jovian companions around LkCa 15 from future observations, the inner disk should be detected and its effect modeled, removed, and shown to be distinguishable from planets. Protoplanet candidates identified from similar systems should likewise be clearly distinguished from disk emission through modeling.
  •  
2.
  • Currie, Thayne, et al. (författare)
  • SCExAO/CHARIS Direct Imaging Discovery of a 20 au Separation, Low-mass Ratio Brown Dwarf Companion to an Accelerating Sun-like Star
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 904:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the direct imaging discovery of a substellar companion to the nearby Sun-like star, HD 33632 Aa, at a projected separation of similar to 20 au, obtained with SCExAO/CHARIS integral field spectroscopy complemented by Keck/NIRC2 thermal infrared imaging. The companion, HD 33632 Ab, induces a 10.5 sigma astrometric acceleration on the star as detected with the Gaia and Hipparcos satellites. SCExAO/CHARIS JHK (1.1-2.4 mu m) spectra and Keck/NIRC2 L-p (3.78 mu m) photometry are best matched by a field L/T transition object: an older, higher-gravity, and less dusty counterpart to HR 8799 cde. Combining our astrometry with Gaia/Hipparcos data and archival Lick Observatory radial velocities, we measure a dynamical mass of 46.4 8 M-J and an eccentricity of e < 0.46 at 95% confidence. HD 33632 Ab's mass and mass ratio (4.0% 0.7%) are comparable to the low-mass brown dwarf GJ 758 B and intermediate between the more massive brown dwarf HD 19467 B and the (near-)planet-mass companions to HR 2562 and GJ 504. Using Gaia to select for direct imaging observations with the newest extreme adaptive optics systems can reveal substellar or even planet-mass companions on solar system-like scales at an increased frequency compared to blind surveys.
  •  
3.
  • Kuzuhara, Masayuki, et al. (författare)
  • Direct-imaging Discovery and Dynamical Mass of a Substellar Companion Orbiting an Accelerating Hyades Sun-like Star with SCExAO/CHARIS
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 934:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the direct-imaging discovery of a substellar companion in orbit around a Sun-like star member of the Hyades open cluster. So far, no other substellar companions have been unambiguously confirmed via direct imaging around main-sequence stars in Hyades. The star HIP 21152 is an accelerating star as identified by the astrometry from the Gaia and Hipparcos satellites. We detected the companion, HIP 21152 B, in multiple epochs using the high-contrast imaging from SCExAO/CHARIS and Keck/NIRC2. We also obtained the stellar radialvelocity data from the Okayama 188 cm telescope. The CHARIS spectroscopy reveals that HIP 21152 B’s spectrum is consistent with the L/T transition, best fit by an early T dwarf. Our orbit modeling determines the semimajor axis and the dynamical mass of HIP 21152 B to be 17.5-+3.87.2 au and 27.8-+5.48.4 MJup, respectively. The mass ratio of HIP 21152 B relative to its host is ≈2%, near the planet/brown dwarf boundary suggested by recent surveys. Mass estimates inferred from luminosity-evolution models are slightly higher (33–42 MJup). With a dynamical mass and a well-constrained age due to the system’s Hyades membership, HIP 21152 B will become a critical benchmark in understanding the formation, evolution, and atmosphere of a substellar object as a function of mass and age. Our discovery is yet another key proof of concept for using precision astrometry to select directimaging targets.
  •  
4.
  • Lawson, Kellen, et al. (författare)
  • SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new, near-infrared (1.1-2.4 mu m) high-contrast imaging of the debris disk around HD 15115 with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). The SCExAO/CHARIS resolves the disk down to rho similar to 02 (r(proj) similar to 10 au), a factor of similar to 3-5 smaller than previous recent studies. We derive a disk position angle of PA similar to 2794-2805 and an inclination ofi similar to 853-86.2. While recent SPHERE/IRDIS imagery of the system could suggest a significantly misaligned two-ring disk geometry, CHARIS imagery does not reveal conclusive evidence for this hypothesis. Moreover, optimizing models of both one- and two-ring geometries using differential evolution, we find that a single ring having a Hong-like scattering phase function matches the data equally well within the CHARIS field of view (rho less than or similar to 1 ''). The disk's asymmetry, well evidenced at larger separations, is also recovered; the west side of the disk appears, on average, around 0.4 mag brighter across the CHARIS bandpass between 025 and 1 ''. Comparing Space Telescope Imaging Spectrograph (STIS) 50CCD optical photometry (2000-10500 A) with CHARIS near-infrared photometry, we find a red (STIS/50CCD-CHARIS broadband) color for both sides of the disk throughout the 04-1 '' region of overlap, in contrast to the blue color reported at similar wavelengths for regions exterior to similar to 2 ''. Further, this color may suggest a smaller minimum grain size than previously estimated at larger separations. Finally, we provide constraints on planetary companions and discuss possible mechanisms for the observed inner disk flux asymmetry and color.
  •  
5.
  • Yang, Yi, et al. (författare)
  • High-resolution Near-infrared Polarimetry and Submillimeter Imaging of FS Tau A : Possible Streamers in Misaligned Circumbinary Disk System
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 889:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed the young (2.8 Myr-old) binary system FS Tau A using near-infrared (H-band) high -contrast polarimetry data from Subaru/HiCIAO and submillimeter CO (J = 2-1) line emission data from Atacama Large Millimeter/submillimeter Array (ALMA). Both the near-infrared and submillimeter observations reveal several clear structures extending to similar to 240 au from the stars. Based on these observations at different wavelengths, we report the following discoveries. One arm-like structure detected in the near-infrared band initially extends from the south of the binary with a subsequent turn to the northeast, corresponding to two bar-like structures detected in ALMA observations with an local standard of rest kinematic (LSRK) velocity of 1.19-5.64 km s(-1). Another feature detected in the near-infrared band extends initially from the north of the binary, relating to an arm-like structure detected in ALMA observations with an LSRK velocity of 8.17-16.43 km s(-1). From their shapes and velocities, we suggest that these structures can mostly be explained by two streamers that connect the outer circumbinary disk and the central binary components. These discoveries will be helpful for understanding the evolution of streamers and circumstellar disks in young binary systems.
  •  
6.
  • Currie, Thayne, et al. (författare)
  • Direct imaging and astrometric detection of a gas giant planet orbiting an accelerating star
  • 2023
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 380:6641, s. 198-203
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct imaging of gas giant exoplanets provides information on their atmospheres and the architectures of planetary systems. However, few planets have been detected in blind surveys with direct imaging. Using astrometry from the Gaia and Hipparcos spacecraft, we identified dynamical evidence for a gas giant planet around the nearby star HIP 99770. We confirmed the detection of this planet with direct imaging using the Subaru Coronagraphic Extreme Adaptive Optics instrument. The planet, HIP 99770 b, orbits 17 astronomical units from its host star, receiving an amount of light similar to that reaching Jupiter. Its dynamical mass is 13.9 to 16.1 Jupiter masses. The planet-to-star mass ratio [(7 to 8) × 10−3] is similar to that of other directly imaged planets. The planet’s atmospheric spectrum indicates an older, less cloudy analog of the previously imaged exoplanets around HR 8799.
  •  
7.
  • Currie, Thayne, et al. (författare)
  • Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546
  • 2017
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 836:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r similar to 0.3 to r similar to 1 (34-114 au). The disk is oriented in a near east-west direction (PA similar to 75 degrees), is inclined by i similar to 70 degrees-75 degrees, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk's eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t similar to 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (3-10 Myr) and a possible connection to Taurus-Auriga's star formation history. SCExAO's planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk's visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet-disk interactions.
  •  
8.
  • Mayama, Satoshi, et al. (författare)
  • Subaru Near-infrared Imaging Polarimetry of Misaligned Disks around the SR 24 Hierarchical Triple System
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The SR 24 multistar system hosts both circumprimary and circumsecondary disks, which are strongly misaligned with each other. The circumsecondary disk is circumbinary in nature. Interestingly, both disks are interacting, and they possibly rotate in opposite directions. To investigate the nature of this unique twin disk system, we present 01 resolution near-infrared polarized intensity images of the circumstellar structures around SR 24, obtained with HiCIAO mounted on the Subaru 8.2 m telescope. Both the circumprimary disk and the circumsecondary disk are resolved and have elongated features. While the position angle of the major axis and radius of the near-IR (NIR) polarization disk around SR 24S are 55° and 137 au, respectively, those around SR 24N are 110° and 34 au, respectively. With regard to overall morphology, the circumprimary disk around SR 24S shows strong asymmetry, whereas the circumsecondary disk around SR 24N shows relatively strong symmetry. Our NIR observations confirm the previous claim that the circumprimary and circumsecondary disks are misaligned from each other. Both the circumprimary and circumsecondary disks show similar structures in 12CO observations in terms of its size and elongation direction. This consistency is because both NIR and 12CO are tracing surface layers of the flared disks. As the radius of the polarization disk around SR 24N is roughly consistent with the size of the outer Roche lobe, it is natural to interpret the polarization disk around SR 24N as a circumbinary disk surrounding the SR 24Nb–Nc system.
  •  
9.
  • Rich, Evan A., et al. (författare)
  • Multi-epoch Direct Imaging and Time-variable Scattered Light Morphology of the HD 163296 Protoplanetary Disk
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary disk around HD 163296 observed with the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO) and Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)/Coronagraphic High Angular Resolution Imaging Spectrograph (CHARTS) instruments at Subaru Observatory. The polarimetric imagery resolve a broken ring structure surrounding HD 163296 that peaks at a distance along the major axis of 0 ''.65 (66 au) and extends out to 0 ''.98 (100 au) along the major axis. Our 2011 H-band data exhibit clear axisymmetry, with the NW and SE side of the disk exhibiting similar intensities. Our data are clearly different from 2016 epoch H-band observations of the Very Large Telescope (VLT)/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), which found a strong 2.7 x asymmetry between the NW and SE side of the disk. Collectively, these results indicate the presence of time-variable, non-azimuthally symmetric illumination of the outer disk. While our SCExAO/CHARIS data are sensitive enough to recover the planet candidate identified from NIRC2 in the thermal infrared (IR), we fail to detect an object with JHK brightness nominally consistent with this object. This suggests that the candidate is either fainter in JHK bands than model predictions, possibly due to extinction from the disk or atmospheric dust/clouds, or that it is an artifact of the data set/data processing, such as a residual speckle or partially subtracted disk feature. Assuming standard hot-start evolutionary models and a system age of 5 Myr, we set new, direct mass limits for the inner (outer) Atacama Large Millimeter/submillimeter Array (ALMA)-predicted protoplanet candidate along the major (minor) disk axis of of 1.5 (2) M-J.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy