SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grossart Hans Peter) ;pers:(Brothers Soren)"

Sökning: WFRF:(Grossart Hans Peter) > Brothers Soren

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brothers, Soren, et al. (författare)
  • A feedback loop links brownification and anoxia in a temperate, shallow lake
  • 2014
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 59:4, s. 1388-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examines a natural, rapid, fivefold increase in dissolved organic carbon (DOC) concentrations in a temperate shallow lake, describing the processes by which increased DOC resulted in anoxic conditions and altered existing carbon cycling pathways. High precipitation for two consecutive years led to rising water levels and the flooding of adjacent degraded peatlands. Leaching from the flooded soils provided an initial increase in DOC concentrations (from a 2010 mean of 12 ± 1 mg L−1 to a maximum concentration of 53 mg L−1 by June 2012). Increasing water levels, DOC, and phytoplankton concentrations reduced light reaching the sediment surface, eliminating most benthic primary production and promoting anoxia in the hypolimnion. From January to June 2012 there was a sudden increase in total phosphorus (from 57 µg L−1 to 216 µg L−1), DOC (from 24.6 mg L−1 to 53 mg L−1), and iron (from 0.12 mg L−1 to 1.07 mg L−1) concentrations, without any further large fluxes in water levels. We suggest that anoxic conditions at the sediment surface and flooded soils produced a dramatic release of these chemicals that exacerbated brownification and eutrophication, creating anoxic conditions that persisted roughly 6 months below a water depth of 1 m and extended periodically to the water surface. This brownification-anoxia feedback loop resulted in a near-complete loss of macroinvertebrate and fish populations, and increased surface carbon dioxide (CO2) emissions by an order of magnitude relative to previous years.
  •  
2.
  • Brothers, Soren M, et al. (författare)
  • A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake
  • 2013
  • Ingår i: Ecosphere. - 2150-8925 .- 2150-8925. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological regime shifts and carbon cycling in aquatic systems have both been subject to increasing attention in recent years, yet the direct connection between these topics has remained poorly understood. A four-fold increase in sedimentation rates was observed within the past 50 years in a shallow eutrophic lake with no surface in- or outflows. This change coincided with an ecological regime shift involving the complete loss of submerged macrophytes, leading to a more turbid, phytoplankton-dominated state. To determine whether the increase in carbon (C) burial resulted from a comprehensive transformation of C cycling pathways in parallel to this regime shift, we compared the annual C balances (mass balance and ecosystem budget) of this turbid lake to a similar nearby lake with submerged macrophytes, a higher transparency, and similar nutrient concentrations. C balances indicated that roughly 80% of the C input was permanently buried in the turbid lake sediments, compared to 40% in the clearer macrophyte-dominated lake. This was due to a higher measured C burial efficiency in the turbid lake, which could be explained by lower benthic C mineralization rates. These lower mineralization rates were associated with a decrease in benthic oxygen availability coinciding with the loss of submerged macrophytes. In contrast to previous assumptions that a regime shift to phytoplankton dominance decreases lake heterotrophy by boosting whole-lake primary production, our results suggest that an equivalent net metabolic shift may also result from lower C mineralization rates in a shallow, turbid lake. The widespread occurrence of such shifts may thus fundamentally alter the role of shallow lakes in the global C cycle, away from channeling terrestrial C to the atmosphere and towards burying an increasing amount of C.
  •  
3.
  • Lischke, Betty, et al. (författare)
  • Benthic carbon is inefficiently transferred in the food webs of two eutrophic shallow lakes
  • 2017
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 62:10, s. 1693-1706
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. The sum of benthic autotrophic and bacterial production often exceeds the sum of pelagic autotrophic and bacterial production, and hence may contribute sub- stantially to whole-lake carbon fluxes, especially in shallow lakes. Furthermore, both benthic and pelagic autotrophic and bacterial production are highly edible and of sufficient nutritional quality for animal consumers. We thus hypothesised that pelagic and benthic transfer efficiencies (ratios of production at adjacent trophic levels) in shallow lakes should be similar. 2. We performed whole ecosystem studies in two shallow lakes (3.5 ha, mean depth 2 m), one with and one without submerged macrophytes, and quantified pelagic and benthic biomass, production and transfer efficiencies for bacteria, phytoplank- ton, epipelon, epiphyton, macrophytes, zooplankton, macrozoobenthos and fish. We expected higher transfer efficiencies in the lake with macrophytes, because these provide shelter and food for macrozoobenthos and may thus enable a more efficient conversion of basal production to consumer production. 3. In both lakes, the majority of the whole-lake autotrophic and bacterial produc- tion was provided by benthic organisms, but whole-lake primary consumer pro- duction mostly relied on pelagic autotrophic and bacterial production. Consequently, transfer efficiency of benthic autotrophic and bacterial production to macrozoobenthos production was an order of magnitude lower than the transfer efficiency of pelagic autotrophic and bacterial production to rotifer and crustacean production. Between-lake differences in transfer efficiencies were minor. 4. We discuss several aspects potentially causing the unexpectedly low benthic transfer efficiencies, such as the food quality of producers, pelagic–benthic links, oxygen concentrations in the deeper lake areas and additional unaccounted con- sumer production by pelagic and benthic protozoa and meiobenthos at interme- diate or top trophic levels. None of these processes convincingly explain the large differences between benthic and pelagic transfer efficiencies. 5. Our data indicate that shallow eutrophic lakes, even with a major share of auto- trophic and bacterial production in the benthic zone, can function as pelagic sys- tems with respect to primary consumer production. We suggest that the benthic autotrophic production was mostly transferred to benthic bacterial production, which remained in the sediments, potentially cycling internally in a similar way to what has previously been described for the microbial loop in pelagic habitats. Understanding the energetics of whole-lake food webs, including the fate of the substantial benthic bacterial production, which is either mineralised at the sedi- ment surface or permanently buried, has important implications for regional and global carbon cycling
  •  
4.
  • Mehner, Thomas, et al. (författare)
  • Weak response of animal allochthony and production to enhanced supply of terrestrial leaf litter in nutrient-rich lakes
  • 2016
  • Ingår i: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 19:2, s. 311-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27–40%, although terrestrial POC contributed less than about 10% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs.
  •  
5.
  • Paranaiba, Jose R., et al. (författare)
  • Cross-continental importance of CH4 emissions from dry inland-waters
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 814
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite substantial advances in quantifying greenhouse gas (GHG) emissions from dry inland waters, existing estimates mainly consist of carbon dioxide (CO2) emissions. However, methane (CH4) may also be relevant due to its higher Global Warming Potential (GWP). We report CH4 emissions from dry inland water sediments to i) provide a cross-continental estimate of such emissions for different types of aquatic systems (i.e., lakes, ponds, reservoirs, and streams) and climate zones (i.e., tropical, continental, and temperate); and ii) determine the environmental factors that control these emissions. CH4 emissions from dry inland waters were consistently higher than emissions observed in adjacent uphill soils, across climate zones and in all aquatic systems except for streams. However, the CH4 contribution (normalized to CO2 equivalents; CO2-eq) to the total GHG emissions of dry inland waters was similar for all types of aquatic systems and varied from 10 to 21%. Although we discuss multiple controlling factors, dry inland water CH4 emissions were most strongly related to sediment organic matter content and moisture. Summing CO2 and CH4 emissions revealed a cross-continental average emission of 9.6 +/- 17.4 g CO2-eqm(-2) d(-1) from dry inland waters. We argue that increasing droughts likely expand the worldwide surface area of atmosphere-exposed aquatic sediments, thereby increasing global dry inland water CH4 emissions. Hence, CH4 cannot be ignored if we want to fully understand the carbon (C) cycle of dry sediments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy