SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gullberg Urban) ;pers:(Lennartsson Andreas)"

Sökning: WFRF:(Gullberg Urban) > Lennartsson Andreas

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Canny, G, et al. (författare)
  • Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein
  • 2006
  • Ingår i: American Journal of Physiology: Gastrointestinal and Liver Physiology. - : American Physiological Society. - 1522-1547 .- 0193-1857. ; 290:3, s. 557-567
  • Tidskriftsartikel (refereegranskat)abstract
    • Epithelial cells of many mucosal organs have adapted to coexist with microbes and microbial products. In general, most studies suggest that epithelial cells benefit from interactions with commensal microorganisms present at the lumenal surface. However, potentially injurious molecules found in this microenvironment also have the capacity to elicit local inflammatory responses and even systemic disease. We have recently demonstrated that epithelia cells express the anti-infective molecule bactericidal/permeability-increasing protein (BPI). Here, we extend these findings to examine molecular mechanisms of intestinal epithelial cell (IEC) BPI expression and function. Initial experiments revealed a variance of BPI mRNA and protein expression among various IEC lines. Studies of BPI promoter expression in IECs identified regulatory regions of the BPI promoter and revealed a prominent role for CCAAT/enhancer binding protein and especially Sp1/Sp3 in the basal regulation of BPI. To assess the functional significance of this protein, we generated an IEC line stably transfected with full-length BPI. We demonstrated that, whereas epithelia express markedly less BPI protein than neutrophils, epithelial BPI contributes significantly to bacterial killing and attenuating bacterial-elicted proinflammatory signals. Additional studies in murine tissue ex vivo revealed that BPI is diffusely expressed along the crypt-villous axis and that epithelial BPI levels decrease along the length of the intestine. Taken together, these data confirm the transcriptional regulation of BPI in intestinal epithelia and provide insight into the relevance of BPI as an anti-infective molecule at intestinal surfaces.
  •  
2.
  •  
3.
  • Lennartsson, Andreas, et al. (författare)
  • A murine antibacterial orthologue to human bactericidal/permeability-increasing protein (BPI) is expressed in testis, epididymis, and bone marrow.
  • 2005
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 1938-3673 .- 0741-5400. ; 77:3, s. 369-377
  • Tidskriftsartikel (refereegranskat)abstract
    • The bactericidal/permeability-increasing protein (BPI), stored in human neutrophil granulocytes, is cytotoxic against Gram-negative bacteria. Several genes related to BPI cluster on human chromosome 20 and on mouse chromosome 2, but expression and characterization of a BPI ortholog in the mouse have not been reported. We asked whether BPI is structurally and functionally conserved between humans and mice and whether murine BPI might be synthesized in neutrophils as well as in other tissues. We report the isolation of a murine full-length cDNA encoding a 54-kDa protein, showing 53% amino acid identity and 71% similarity, to human BPI. The murine BPI and human BPI genes show a similar exon-intron organization. Murine BPI mRNA was detected in testis, epididymis, and bone marrow, as well as in Sertoli and promyelocytic cell lines. Although levels of BPI mRNA in human and murine testis were comparable, expression in murine bone marrow cells was low as compared with that in human bone marrow. BPI protein showed a cytoplasmic, granular localization in mature neutrophils. BPI gene expression in Sertoli and promyelocytic cells was enhanced several-fold by all-trans retinoic acid. Overexpression of murine BPI in human embryonic kidney 293 cells resulted in antibacterial activity against Escherichia coli, comparable with that obtained with human BPI. In conclusion, it was demonstrated that mouse neutrophils store BPI with antibacterial activity and that murine BPI is also expressed in testis and epididymis.
  •  
4.
  • Lennartsson, Andreas, et al. (författare)
  • All-trans retinoic acid-induced expression of bactericidal/permeability-increasing protein (BPI) in human myeloid cells correlates to binding of C/EBP{beta} and C/EBP{varepsilon} to the BPI promoter.
  • 2006
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 1938-3673 .- 0741-5400. ; 80:1, s. 196-203
  • Tidskriftsartikel (refereegranskat)abstract
    • Bactericidal/permeability-inereasing protein (BPI) neutralizes the proinflammatory effects of lipopolysaccharide and is of potential clinical use in the treatment of fulminant Gram-negative infections. BPI is a cationic protein with antibacterial activity stored in azurophil (primary) granules of neutrophil granulocytes. However, the absence of BPI in patients with specific granule deficiency indicates a transcriptional control of BPI, which is distinct from that of other azurophil granule proteins. Accordingly, we demonstrate in vivo that the BPI mRNA level peaks, together with mRNA for specific granule proteins, during the myelocytic and metamyelocytic stage of granulocytic maturation. The human promyelocytic cell line NB4 expresses several azurophil granule proteins, but expression of BPI is undetectable. We show that treatment of NB4 cells with all-trans retinoic acid (ATRA) induces BPI expression at mRNA and at protein level. The induction is dependent on de novo protein synthesis, as judged by sensitivity to cycloheximide. Previous investigations have indicated a potential role of CCAAT/enhancer-binding protein (C/EBP) transcription factors in the regulation of BPI expression. Here, we show that induction of NB4 cells with ATRA correlates to direct binding of C/EBP beta and C/EBP epsilon to the proximal BPI promoter, as determined by electrophoretic mobility shift analysis and chromatin immunoprecipitation. The dependency on C/EBP beta and C/EBP epsilon provides an explanation for delayed BPI mRNA expression, as compared with mRNA of other azurophil granule proteins.
  •  
5.
  •  
6.
  •  
7.
  • Nilsson, Helena Jernmark, et al. (författare)
  • The transcriptional coregulator NAB2 is a target gene for the Wilms' tumor gene 1 protein (WT1) in leukemic cells
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:50, s. 87136-87150
  • Tidskriftsartikel (refereegranskat)abstract
    • The Wilms' tumor gene 1 (WT1) is recurrently mutated in acute myeloid leukemia. Mutations and high expression of WT1 associate with a poor prognosis. In mice, WT1 cooperates with the RUNX1/RUNX1T1 (AML1/ETO) fusion gene in the induction of acute leukemia, further emphasizing a role for WT1 in leukemia development. Molecular mechanisms for WT1 are, however, incompletely understood. Here, we identify the transcriptional coregulator NAB2 as a target gene of WT1. Analysis of gene expression profiles of leukemic samples revealed a positive correlation between the expression of WT1 and NAB2, as well as a non-zero partial correlation. Overexpression of WT1 in hematopoietic cells resulted in increased NAB2 levels, while suppression of WT1 decreased NAB2 expression. WT1 bound and transactivated the proximal NAB2 promoter, as shown by ChIP and reporter experiments, respectively. ChIP experiments also revealed that WT1 can recruit NAB2 to the IRF8 promoter, thus modulating the transcriptional activity of WT1, as shown by reporter experiments. Our results implicate NAB2 as a previously unreported target gene of WT1 and that NAB2 acts as a transcriptional cofactor of WT1.
  •  
8.
  • Sandén, Carl, et al. (författare)
  • Forced expression of the DEK-NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR
  • 2013
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The t(6;9)(p23;q34) chromosomal translocation is found in 1% of acute myeloid leukemia and encodes the fusion protein DEK-NUP214 (formerly DEK-CAN) with largely uncharacterized functions. Methods: We expressed DEK-NUP214 in the myeloid cell lines U937 and PL-21 and studied the effects on cellular functions. Results: In this study, we demonstrate that expression of DEK-NUP214 increases cellular proliferation. Western blot analysis revealed elevated levels of one of the key proteins regulating proliferation, the mechanistic target of rapamycin, mTOR. This conferred increased mTORC1 but not mTORC2 activity, as determined by the phosphorylation of their substrates, p70 S6 kinase and Akt. The functional importance of the mTOR upregulation was determined by assaying the downstream cellular processes; protein synthesis and glucose metabolism. A global translation assay revealed a substantial increase in the translation rate and a metabolic assay detected a shift from glycolysis to oxidative phosphorylation, as determined by a reduction in lactate production without a concomitant decrease in glucose consumption. Both these effects are in concordance with increased mTORC1 activity. Treatment with the mTORC1 inhibitor everolimus (RAD001) selectively reversed the DEK-NUP214-induced proliferation, demonstrating that the effect is mTOR-dependent. Conclusions: Our study shows that the DEK-NUP214 fusion gene increases proliferation by upregulation of mTOR, suggesting that patients with leukemias carrying DEK-NUP214 may benefit from treatment with mTOR inhibitors.
  •  
9.
  •  
10.
  • Scialdone, Annarita, et al. (författare)
  • Depletion of the transcriptional coactivators CREB-binding protein or EP300 downregulates CD20 in diffuse large B-cell lymphoma cells and impairs the cytotoxic effects of anti-CD20 antibodies
  • 2019
  • Ingår i: Experimental Hematology. - : Elsevier BV. - 0301-472X .- 1873-2399. ; 79, s. 1-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Monoclonal antibodies targeting CD20 are central in the treatment of B-cell lymphomas. In diffuse large B-cell lymphoma (DLBCL), inactivating mutations of the histone acetyltransferases CREB-binding protein (CBP) and EP300 are common. Moreover, knockdown of CBP in DLBCL has been shown to result in aberrant transcriptional silencing. Expression of CD20 is sensitive to epigenetic manipulation, and histone deacetylase inhibitors have been found to potentiate treatment with anti-CD20 antibodies. Therefore, we studied the role of CBP and EP300 depletion on CD20 expression and effects of the anti-CD20 antibodies rituximab and obinutuzumab in DLBCL cells. Levels of CBP and EP300 were reduced by shRNA in the germinal centre-derived diffuse large B-cell lymphoma cell line SU-DHL4. The levels of CD20 mRNA and protein were determined by quantitative polymerase chain reaction, Western blot, and flow cytometry. Binding of the transcription factors PU.1 and FOXO1 to the CD20 promoter was determined by chromatin immunoprecipitation coupled with quantitative polymerase chain reaction. Response to the monoclonal anti-CD20 antibodies rituximab and obinutuzumab in CBP- or EP300-depleted cells was assessed by complement-dependent cell death, direct cell death, and antibody-dependent cellular cytotoxicity (ADCC). Our results suggest that depletion of CBP and EP300 levels leads to a strong reduction of CD20 expression, accompanied by reduced binding of PU.1 to the CD20 promoter. In CBP-depleted, but not EP300-depleted cells, increased binding of FOXO1 to the CD20 promoter was observed. Interestingly, CBP or EP300 depletion leads to decreased complement-dependent cell death and direct cell death in response to rituximab and obinutuzumab, which was most pronounced in response to rituximab in CBP-depleted cells. Our data suggest that inactivating mutations of CBP, and to a lesser extent EP300, may impair the response to anti-CD20 antibodies. However, these observations should be analyzed in future clinical trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy