SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gunji T.) ;lar1:(lnu)"

Sökning: WFRF:(Gunji T.) > Linnéuniversitetet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  • Abdalla, H., et al. (författare)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
4.
  • Acero, F., et al. (författare)
  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 840:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.
  •  
5.
  • Kanai, Y., et al. (författare)
  • Beam test of a prototype phoswich detector assembly for the PoGOLite astronomical soft gamma-ray polarimeter
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 570:1, s. 61-71
  • Tidskriftsartikel (refereegranskat)abstract
    • We report about the beam test on a prototype of the balloon-based astronomical soft gamma-ray polarimeter, PoGOLite (Polarized Gamma-ray Observer-Light Version) conducted at KEK Photon Factory, a synchrotron radiation facility in Japan. The synchrotron beam was set at 30, 50, and 70 keV and its polarization was monitored by a calibrated polarimeter. The goal of the experiment was to validate the flight design of the polarimeter. PoGOLite is designed to measure polarization by detecting a Compton scattering and the subsequent photo-absorption in an array of 217 well-type phoswich detector cells (PDCs). The test setup included a first flight model PDC and a front-end electronics to select and reconstruct valid Compton scattering events. The experiment has verified that the flight PDC can detect recoil electrons and select valid Compton scattering events down to 30 keV from background. The measure azimuthal modulations (34.4%, 35.8% and 37.2% at 30, 50, and 70 keV, respectively) agreed within 10% (relative) with the predictions by Geant4 implemented with dependence on the initial and final photon polarizations.
  •  
6.
  • Tanaka, T., et al. (författare)
  • Data acquisition system for the PoGOLite astronomical hard X-ray polarimeter
  • 2007
  • Ingår i: Nuclear Science Symposium Conference Record, 2007. - 9781424409228 ; , s. 445-449, s. 445-449
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The PoGOLite is a new balloon-borne instrument to measure the polarization of hard X-rays/soft gamma-rays in the 25-80 keV energy range for the first time. In order to detect the polarization, PoGOLite measures the azimuthal angle asymmetry of Compton scattering and the subsequent photo-absorption in an array of detectors. This array consists of 217 well-type phoswich detector cells (PDCs) surrounded by a side anti-coincidence shield (SAS) composed of 54 segments of BGO crystals. At balloon altitude, the intensity of backgrounds due to cosmic-ray charged particles, atmospheric gamma-rays and neutrons is extremely high, typically a few hundred Hz per unit. Hence the data acquisition (DAQ) system of PoGOLite is required to handle more than 270 signals simultaneously, and detect weak signals from astrophysical objects (100mCrab, 1.5 cs(-1) in 25-80 keV) under such a severe environment. We have developed a new DAQ system consisting of front-end electronics, waveform digitizer, Field Programmable Gate Array (FPGA) and a microprocessor. In this system, all output signals of PDC / SAS are fed into individual charge-sensitive amplifier and then digitized to 12 bit accuracy at 24 MSa/s by pipelined analog to digital converters. A DAQ board for the PDC records waveforms which will be examined in an off-line analysis to distinguish signals from the background events and measure the energy spectrum and polarization of targets. A board for the SAS records hit pattern to be used for background rejection. It also continuously records a pulse-height analysis (PHA) histogram to monitor incident background flux. These basic functions of the DAQ system were verified in a series of beam tests.
  •  
7.
  • Kamae, Tuneyoshi, et al. (författare)
  • PoGOLite - A high sensitivity balloon-borne soft gamma-ray polarimeter
  • 2008
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 30:2, s. 72-84
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200 mCrab point-like sources between 25 and 80 keV in one 6-h flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. Synchrotron radiation, inverse Compton scattering and propagation through high magnetic fields are likely to produce high degrees of polarisation in the energy band of the instrument. We demonstrate, through tests at accelerators, with radioactive sources and through computer simulations, that PoGOLite will be able to detect degrees of polarisation as predicted by models for several classes of high energy sources. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles while securing a large effective area has been the greatest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow Held of view (FWHM = 1.25 msr, 2.0 deg x 2.0 deg) obtained with detector cells and the use of thick background shields warrant a large effective area for polarisation measurements (similar to 228 cm(2) at E = 40 keV) without sacrificing the signal-to-noise ratio. Simulation studies for an atmospheric overburden of 3-4 g/cm(2) indicate that neutrons and gamma-rays entering the PDC assembly through the shields are dominant backgrounds. Off-line event selection based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a similar to 100 mCrab source between 25 and 50 keV. A 6-h observation of the Crab pulsar will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma significance; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. Long-duration flights will measure the dependence of the polarisation across the cyclotron absorption line in Hercules X-1. A scaled-down instrument will be flown as a pathfinder mission from the north of Sweden in 2010. The first science flight is planned to take place shortly thereafter. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy