Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gunter M. J.) "

Sökning: WFRF:(Gunter M. J.)

Sortera/gruppera träfflistan
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  • Thompson, P. M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - 1931-7557. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  • Razavi, Homie A., et al. (författare)
  • Hepatitis C virus prevalence and level of intervention required to achieve the WHO targets for elimination in the European Union by 2030: a modelling study
  • 2017
  • Ingår i: Lancet Gastroenterology & Hepatology. - 2468-1253. ; 2:5, s. 325-336
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide. In the European Union (EU), treatment and cure of HCV with direct-acting antiviral therapies began in 2014. WHO targets are to achieve a 65% reduction in liver-related deaths, a 90% reduction of new viral hepatitis infections, and 90% of patients with viral hepatitis infections being diagnosed by 2030. This study assessed the prevalence of HCV in the EU and the level of intervention required to achieve WHO targets for HCV elimination.METHODS: We populated country Markov models for the 28 EU countries through a literature search of PubMed and Embase between Jan 1, 2000, and March 31, 2016, and a Delphi process to gain expert consensus and validate inputs. We aggregated country models to create a regional EU model. We used the EU model to forecast HCV disease progression (considering the effect of immigration) and developed a strategy to acehive WHO targets. We used weighted average sustained viral response rates and fibrosis restrictions to model the effect of current therapeutic guidelines. We used the EU model to forecast HCV disease progression (considering the effect of immigration) under current screening and therapeutic guidelines. Additionally, we back-calculated the total number of patients needing to be screened and treated to achieve WHO targets.FINDINGS: We estimated the number of viraemic HCV infections in 2015 to be 3 238 000 (95% uncertainty interval [UI] 2 106 000-3 795 000) of a total population of 509 868 000 in the EU, equating to a prevalence of viraemic HCV of 0·64% (95% UI 0·41-0·74). We estimated that 1 180 000 (95% UI 1 003 000-1 357 000) people were diagnosed with viraemia (36·4%), 150 000 (12 000-180 000) were treated (4·6% of the total infected population or 12·7% of the diagnosed population), 133 000 (106 000-160 000) were cured (4·1%), and 57 900 (43 900-67 300) were newly infected (1·8%) in 2015. Additionally, 30 400 (26 600-42 500) HCV-positive immigrants entered the EU. To achieve WHO targets, unrestricted treatment needs to increase from 150 000 patients in 2015 to 187 000 patients in 2025 and diagnosis needs to increase from 88 800 new cases annually in 2015 to 180 000 in 2025.INTERPRETATION: Given its advanced health-care infrastructure, the EU is uniquely poised to eliminate HCV; however, expansion of screening programmes is essential to increase treatment to achieve the WHO targets. A united effort, grounded in sound epidemiological evidence, will also be necessary. 
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - NATURE PUBLISHING GROUP. - 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  • Schmit, Stephanie L, et al. (författare)
  • Novel Common Genetic Susceptibility Loci for Colorectal Cancer
  • 2019
  • Ingår i: Journal of the National Cancer Institute. - Oxford University Press. - 0027-8874. ; 111:2, s. 146-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5x10(-8)) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk.Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5x10(-8)) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided.Results: The discovery GWAS identified 11 variants associated with CRC at P < 5x10(-8), of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0.Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.
  • Michailidou, Kyriaki, et al. (författare)
  • Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer
  • 2015
  • Ingår i: Nature Genetics. - 1061-4036. ; 47:4, s. 373-U127
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 x 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
Skapa referenser, mejla, bekava och länka
fritt online (41)
Typ av publikation
tidskriftsartikel (141)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (139)
övrigt vetenskapligt (4)
Gunter, Marc J. (61)
Riboli, Elio (58)
Boeing, Heiner (57)
Trichopoulou, Antoni ... (56)
Tumino, Rosario (55)
Overvad, Kim (54)
visa fler...
Palli, Domenico (50)
Khaw, Kay-Tee (49)
Kaaks, Rudolf (45)
Weiderpass, Elisabet ... (44)
Boutron-Ruault, Mari ... (38)
Panico, Salvatore (38)
Tjonneland, Anne (37)
Sánchez, Maria-José (35)
Key, Timothy J (32)
Travis, Ruth C (32)
Ardanaz, Eva (30)
Tjønneland, Anne (28)
Kühn, Tilman (27)
Lagiou, Pagona (25)
Olsen, Anja (24)
Bueno-de-Mesquita, H ... (24)
Trichopoulos, Dimitr ... (24)
Ferrari, Pietro (23)
Vineis, Paolo (23)
Fagherazzi, Guy (22)
Sacerdote, Carlotta (21)
Chirlaque, Maria-Dol ... (21)
Jenab, Mazda (21)
Tjonneland, A (20)
Barricarte, Aurelio (20)
Gunter, Marc, (20)
Trichopoulou, A (20)
Peeters, Petra H (19)
Quirós, J Ramón (19)
Johansson, Mattias, (19)
Wareham, Nicholas J. (19)
Dorronsoro, Miren (19)
Freisling, Heinz (19)
Weiderpass, E, (18)
Riboli, E (18)
Wareham, Nick (17)
Romieu, Isabelle (17)
Peeters, Petra H. M. (17)
Skeie, Guri (16)
Severi, Gianluca (16)
Quiros, JR (15)
Tumino, R (15)
Dossus, Laure (15)
Rinaldi, Sabina (15)
visa färre...
Umeå universitet (95)
Karolinska Institutet (80)
Lunds universitet (59)
Uppsala universitet (36)
Göteborgs universitet (21)
Linköpings universitet (3)
visa fler...
Högskolan Dalarna (3)
Kungliga Tekniska Högskolan (2)
Örebro universitet (2)
Sveriges Lantbruksuniversitet (2)
Stockholms universitet (2)
Chalmers tekniska högskola (2)
visa färre...
Engelska (143)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (120)
Naturvetenskap (14)
Lantbruksvetenskap (2)
Teknik (1)
Samhällsvetenskap (1)


pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy