SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hägg Ulrika) ;pers:(Bergström Göran 1964)"

Sökning: WFRF:(Hägg Ulrika) > Bergström Göran 1964

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hägg Samuelsson, Ulrika, 1973, et al. (författare)
  • Gene expression profile and aortic vessel distensibility in voluntarily exercised spontaneously hypertensive rats: potential role of heat shock proteins
  • 2005
  • Ingår i: Physiol Genomics. - 1531-2267 .- 1094-8341. ; 22:3, s. 319-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical exercise is considered to be beneficial for cardiovascular health. Nevertheless, the underlying specific molecular mechanisms still remain unexplored. In this study, we aimed to investigate the effects of voluntary exercise on vascular mechanical properties and gene regulation patterns in spontaneously hypertensive rats. By using ultrasound biomicroscopy in an ex vivo perfusion chamber, we studied the distensibility of the thoracic aorta. Furthermore, exercise-induced gene regulation was studied in aortae, using microarray analysis and validated with real-time PCR. We found that distensibility was significantly improved in aortas from exercising compared with control rats (P < 0.0001). Exercising rats demonstrated a striking pattern of coordinated downregulation of genes belonging to the heat shock protein family. In conclusion, voluntary exercise leads to improved vessel wall distensibility and reduced gene expression of heat shock protein 60 and 70, which may indicate decreased oxidative stress in the aortic vascular wall.
  •  
2.
  • Hägg Samuelsson, Ulrika, 1973, et al. (författare)
  • Physical exercise capacity is associated with coronary and peripheral vascular function in healthy young adults.
  • 2005
  • Ingår i: American journal of physiology. Heart and circulatory physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 289:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Short-term exercise training has been shown to improve cardiovascular function, whereas long-term effects of a physically active lifestyle, on coronary artery function in particular, are still not well studied. We explored possible relationships between physical exercise capacity and coronary and peripheral vascular function in healthy young adults. Twenty-nine healthy young male and female volunteers participated in the study. They underwent 1) basic clinical and echocardiographic characterization, 2) coronary flow velocity reserve (CFVR) measurement of the left anterior descending coronary artery (LAD), 3) common carotid artery (CCA) intima-media thickness (IMT) measurement, 4) assessment of CCA stiffness index (SI), 5) forearm flow-mediated vasodilation (FMD), and 6) submaximal exercise test. The calculated weight-adjusted maximal oxygen uptake capacity (Vo(2 max)(c)) was positively correlated to LAD CFVR and inversely correlated to IMT and SI. Also, subjects with high compared with moderate exercise capacity had higher FMD. In addition, subjects with LAD CFVR in the upper median had greater ratios between endothelium-dependent and -independent vasodilation in the forearm and lower SI in CCA. High exercise capacity due to a physically active lifestyle is associated with high coronary and peripheral artery function, indicating an early protective role of physical exercise for cardiovascular health.
  •  
3.
  • Hägg Samuelsson, Ulrika, 1973, et al. (författare)
  • Voluntary physical exercise and coronary flow velocity reserve: a transthoracic colour Doppler echocardiography study in spontaneously hypertensive rats
  • 2005
  • Ingår i: Clin Sci (Lond). - 0143-5221. ; 109:3, s. 325-34
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we have developed and demonstrated a coronary artery imaging protocol in rats using transthoracic high-frequency CDE (colour Doppler echocardiography) to investigate the potential direct effects of exercise on CFVR (coronary flow velocity reserve). SHR (spontaneously hypertensive rats) performed voluntary exercise for 6 weeks. Rats were then submitted to ultrasonographic examination and CFVR measurements. The LAD (left anterior descending coronary artery) was visualized using transthoracic CDE in a modified parasternal long-axis view. Doppler measurement was made in mid-LAD during baseline and adenosine-induced hyperaemic condition. Gene and protein expression in cardiac tissue were studied using real-time PCR and immunohistochemistry. Adenosine infusion significantly (P<0.001, as determined by ANOVA) decreased HR, without affecting blood pressure in anaesthetized SHR. A significantly greater adenosine dose-dependent response was seen in exercised rats compared with controls (P=0.02, as determined by ANOVA). The baseline flow velocity in mid-LAD was 0.33+/-0.06 and 0.41+/-0.14 m/s in the exercised and control animals respectively (P value was not significant). The maximum adenosine-induced response was reached at a dose of 140 microg.kg-1 of body weight.min-1, and CFVR averaged at 2.6+/-0.53 and 1.5+/-0.24 in exercised and control animals respectively (P<0.01). Gene expression of CuZnSOD was up-regulated by 21% in exercised animals compared with controls (1.1+/-0.16 compared with 0.89+/-0.09; P<0.01), whereas eNOS expression was unchanged. In conclusion, CFVR in rats can be non-invasively assessed using CDE with high feasibility. Physical exercise is associated with improved CFVR and antioxidative capacity in SHR.
  •  
4.
  • Hägg Samuelsson, Ulrika, 1973, et al. (författare)
  • Voluntary physical exercise-induced vascular effects in spontaneously hypertensive rats
  • 2004
  • Ingår i: Clin Sci (Lond). - 0143-5221. ; 107:6, s. 571-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Forced training has been shown to have beneficial vascular effects in various animal exercise models. In the present study, we explored possible physiological and molecular effects of voluntary physical exercise on various vascular beds. SHR (spontaneously hypertensive rats) performed voluntary exercise for 5 weeks in a computerized wheel cage facility. Ex vivo myograph studies revealed an increased sensitivity of the ACh (acetylcholine)-mediated vasodilation in resistance arteries of the exercised animals (ED50=15.0+/-3.5 nmol/l) compared with the controls (ED50=37.0+/-8.8 nmol/l; P=0.05). The exercise/control difference was abolished after scavenging reactive oxygen radicals. In conduit arteries, ACh induced a similar vasodilatory response in both groups. The in vivo aortic wall stiffness, assessed by means of Doppler tissue echography, was significantly lower in the exercising animals than in controls. This was demonstrated by significantly increased peak systolic aortic wall velocity (P=0.03) and the velocity time integral (P=0.01) in exercising animals compared with controls. The relative gene expression of eNOS (endothelial nitric oxide synthase) was similar in both groups of animals, whereas Cu/ZnSOD (copper/zinc superoxide dismutase) gene expression was significantly increased (+111%; P=0.0007) in the exercising animal compared with controls. In conclusion, voluntary physical exercise differentially improves vascular function in various vascular beds. Increased vascular compliance and antioxidative capacity may contribute to the atheroprotective effects associated with physical exercise in conduit vessels.
  •  
5.
  • Johansson, Maria E, 1977, et al. (författare)
  • Haemodynamically significant plaque formation and regional endothelial dysfunction in cholesterol-fed ApoE-/- mice
  • 2005
  • Ingår i: Clinical Science. - 0143-5221 .- 1470-8736. ; 108:6, s. 531-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Flow-mediated vasodilation is suggested as one of the mechanisms involved in arterial expansive remodelling, which is thought to be a defence mechanism in atherogenesis. In the present study, we tested the hypothesis that lumen obstructive plaque formation is associated with failure of NO (nitric oxide)-dependent vasodilation in conduit vessels. Cardiac function and aortic root flow velocities were assessed using high-resolution echocardiography and two-dimensional-guided pulsed Doppler in ApoE(-/-) (apolipoprotein E-deficient) mice fed a standard or high-cholesterol diet. Endothelial function in the proximal and mid-descending aortic regions was studied using a myograph technique. Flow velocity at the aortic root of cholesterol-fed ApoE(-/-) mice was significantly increased as a result of lumen narrowing, detected via histological analysis. NO-dependent vasodilatory responses were selectively impaired in the atherosclerosis-prone vascular regions in cholesterol-fed ApoE(-/-) mice. In conclusion, consumption of a high-cholesterol diet results in lumen obstructive plaque formation in ApoE(-/-) mice, which significantly alters aortic root haemodynamics. This phenomenon is associated with impaired NO-dependent vasodilation in vessel segments known to be prone to atherosclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy