SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Höglund Mattias) ;pers:(Borg Åke)"

Search: WFRF:(Höglund Mattias) > Borg Åke

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Andersson, Anna, et al. (author)
  • Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations
  • 2005
  • In: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 19:6, s. 1042-1050
  • Journal article (peer-reviewed)abstract
    • Hematologic malignancies are characterized by fusion genes of biological/clinical importance. Immortalized cell lines with such aberrations are today widely used to model different aspects of leukemogenesis. Using cDNA microarrays, we determined the gene expression profiles of 40 cell lines as well as of primary leukemias harboring 11q23/MLL rearrangements, t(1;19)[TCF3/PBX1], t(12;21)[ETV6/RUNX1], t(8;21)[RUNX1/CBFA2T1], t(8;14) [IGH@/MYC], t(8;14)[TRA@/MYC], t(9;22)[BCR/ABL1], t(10;11) [PICALM/MLLT10], t(15;17)[PML/RARA], or inv(16)[CBFB/MYH11]. Unsupervised classification revealed that hematopoietic cell lines of diverse origin, but with the same primary genetic changes, segregated together, suggesting that pathogenetically important regulatory networks remain conserved despite numerous passages. Moreover, primary leukemias cosegregated with cell lines carrying identical genetic rearrangements, further supporting that critical regulatory pathways remain intact in hematopoietic cell lines. Transcriptional signatures correlating with clinical subtypes/primary genetic changes were identified and annotated based on their biological/molecular properties and chromosomal localization. Furthermore, the expression profile of tyrosine kinase-encoding genes was investigated, identifying several differentially expressed members, segregating with primary genetic changes, which may be targeted with tyrosine kinase inhibitors. The identified conserved signatures are likely to reflect regulatory networks of importance for the transforming abilities of the primary genetic changes and offer important pathogenetic insights as well as a number of targets for future rational drug design.
  •  
3.
  • Fioretos, Thoas, et al. (author)
  • Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations
  • 1999
  • In: Blood. - 1528-0020. ; 94:1, s. 225-232
  • Journal article (peer-reviewed)abstract
    • An isochromosome of the long arm of chromosome 17, i(17q), is the most frequent genetic abnormality observed during the disease progression of Philadelphia chromosome-positive chronic myeloid leukemia (CML), and has been described as the sole anomaly in various other hematologic malignancies. The i(17q) hence plays a presumably important pathogenetic role both in leukemia development and progression. This notwithstanding, the molecular consequences of this abnormality have not been investigated in detail. We have analyzed 21 hematologic malignancies (8 CML in blast crisis, 8 myelodysplastic syndromes [MDS], 2 acute myeloid leukemias, 2 chronic lymphocytic leukemias, and 1 acute lymphoblastic leukemia) with i(17q) by fluorescence in situ hybridization (FISH). Using a yeast artificial chromosome (YAC) contig, derived from the short arm of chromosome 17, all cases were shown to have a breakpoint in 17p. In 12 cases, the breaks occurred within the Smith-Magenis Syndrome (SMS) common deletion region in 17p11, a gene-rich region which is genetically unstable. In 10 of these 12 cases, we were able to further map the breakpoints to specific markers localized within a single YAC clone. Six other cases showed breakpoints located proximally to the SMS common deletion region, but still within 17p11, and yet another case had a breakpoint distal to this region. Furthermore, using chromosome 17 centromere-specific probes, it could be shown that the majority of the i(17q) chromosomes (11 of 15 investigated cases) were dicentric, ie, they contained two centromeres, strongly suggesting that i(17q) is formed through an intrachromosomal recombination event, and also implicating that the i(17q), in a formal sense, should be designated idic(17)(p11). Because i(17q) formation results in loss of 17p material, potentially uncovering the effect of a tumor suppressor on the remaining 17p, the occurrence of TP53 mutations was studied in 17 cases by sequencing the entire coding region. In 16 cases, no TP53 mutations were found, whereas one MDS displayed a homozygous deletion of TP53. Thus, our data suggest that there is no association between i(17q) and coding TP53 mutations, and that another tumor suppressor gene(s), located in proximity of the SMS common deletion region, or in a more distal location, is of pathogenetic importance in i(17q)-associated leukemia.
  •  
4.
  • Harbst, Katja, et al. (author)
  • Molecular profiling reveals low- and high-grade forms of primary melanoma.
  • 2012
  • In: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1557-3265. ; 18:15, s. 4026-4036
  • Journal article (peer-reviewed)abstract
    • For primary melanomas, tumor thickness, mitotic rate, and ulceration are well-laid cornerstones of prognostication. However, a molecular exposition of melanoma aggressiveness is critically missing. We recently uncovered a four-class structure in metastatic melanoma, which predicts outcome and informs biology. This raises the possibility that a molecular structure exists even in the early stages of melanoma and that molecular determinants could underlie histophenotype and eventual patient outcome.We subjected 223 archival primary melanomas to a horizontally integrated analysis of RNA expression, oncogenic mutations at 238 lesions, histomorphometry, and survival data.Our previously described four-class structure that was elucidated in metastatic lesions was evident within the expression space of primary melanomas. Because these subclasses converged into two larger prognostic and phenotypic groups, we used the metastatic lesions to develop a binary subtype-based signature capable of distinguishing between "high" and "low" grade forms of the disease. The two-grade signature was subsequently applied to the primary melanomas. Compared with low-grade tumors, high-grade primary melanomas were significantly associated with increased tumor thickness, mitotic rate, ulceration (all P < 0.01), and poorer relapse-free (HR = 4.94; 95% CI, 2.84-8.59), and overall (HR = 3.66; 95% CI, 2.40-5.58) survival. High-grade melanomas exhibited elevated levels of proliferation and BRCA1/DNA damage signaling genes, whereas low-grade lesions harbored higher expression of immune genes. Importantly, the molecular-grade signature was validated in two external gene expression data sets.We provide evidence for a molecular organization within melanomas, which is preserved across all stages of disease.
  •  
5.
  •  
6.
  • Heidenblad, Markus, et al. (author)
  • Tiling resolution array CGH and high density expression profiling of urothelial carcinomas delineate genomic amplicons and candidate target genes specific for advanced tumors.
  • 2008
  • In: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 1:Jan 31
  • Journal article (peer-reviewed)abstract
    • ABSTRACT: BACKGROUND: Urothelial carcinoma (UC) is characterized by nonrandom chromosomal aberrations, varying from one or a few changes in early-stage and low-grade tumors, to highly rearranged karyotypes in muscle-invasive lesions. Recent array-CGH analyses have shed further light on the genomic changes underlying the neoplastic development of UC, and have facilitated the molecular delineation amplified and deleted regions to the level of specific candidate genes. In the present investigation we combine detailed genomic information with expression information to identify putative target genes for genomic amplifications. METHODS: We analyzed 38 urothelial carcinomas by whole-genome tiling resolution array-CGH and high density expression profiling to identify putative target genes in common genomic amplifications. When necessary expression profiling was complemented with Q-PCR of individual genes. RESULTS: Three genomic segments were frequently and exclusively amplified in high grade tumors; 1q23, 6p22 and 8q22, respectively. Detailed mapping of the 1q23 segment showed a heterogeneous amplification pattern and no obvious commonly amplified region. The 6p22 amplicon was defined by a 1.8 Mb core region present in all amplifications, flanked both distally and proximally by segments amplified to a lesser extent. By combining genomic profiles with expression profiles we could show that amplification of E2F3, CDKAL1, SOX4, and MBOAT1 as well as NUP153, AOF1, FAM8A1 and DEK in 6p22 was associated with increased gene expression. Amplification of the 8q22 segment was primarily associated with YWHAZ (14-3-3-zeta) and POLR2K over expression. The possible importance of the YWHA genes in the development of urothelial carcinomas was supported by another recurrent amplicon paralogous to 8q22, in 2p25, where increased copy numbers lead to enhanced expression of YWHAQ (14-3-3-theta). Homozygous deletions were identified at 10 different genomic locations, most frequently affecting CDKN2A/CDKN2B in 9p21 (32%). Notably, the latter occurred mutually exclusive with 6p22 amplifications. CONCLUSION: The presented data indicates 6p22 as a composite amplicon with more than one possible target gene. The data also suggests that amplification of 6p22 and homozygous deletions of 9p21 may have complementary roles. Furthermore, the analysis of paralogous regions that showed genomic amplification indicated altered expression of YWHA (14-3-3) genes as important events in the development of UC.
  •  
7.
  • Jönsson, Göran B, et al. (author)
  • High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization.
  • 2007
  • In: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 46:6, s. 543-558
  • Journal article (peer-reviewed)abstract
    • A BAC-array platform for comparative genomic hybridization was constructed from a library of 32,433 clones providing complete genome coverage, and evaluated by screening for DNA copy number changes in 10 breast cancer cell lines (BT474, MCF7, HCC1937, SK-BR-3, L56Br-C1, ZR-75-1, JIMTI, MDA-MB-231, MDA-MB-361, and HCC2218) and one cell line derived from fibrocystic disease of the breast (MCF10A). These were also characterized by gene expression analysis and found to represent all five recently described breast cancer subtypes using the '' intrinsic gene set '' and centroid correlation. Three cell lines, HCC 1937 and L56BrC1 derived from BRCA I mutation carriers and MDA-MB-23 1, were of basal-like subtype and characterized by a high frequency of low-level gains and losses of typical pattern, including limited deletions on Sq. Four estrogen receptor positive cell lines were of luminal A subtype and characterized by a different pattern of aberrations and high-level amplifications, including ERBB2 and other 17q amplicons in BT474 and MDA-MB-361. SK-BR-3 cells, characterized by a complex genome including ERBB2 amplification, massive high-level amplifications on 8q and a homozygous deletion of CDH1 at 16q22, had an expression signature closest to luminal B subtype. The effects of gene amplifications were verified by gene expression analysis to distinguish targeted genes from silent amplicon passengers. JIMT1, derived from an ERBB2 amplified trastuzumab resistant tumor, was of the ERBB2 subtype. Homozygous deletions included other known targets such as PTEN (HCC1937) and CDKN2A (MDA-MB-231, MCF10A), but also new candidate suppressor genes such as FUSSEL18 (HCC1937) and WDR11 (L56Br-C1) as well as regions without known genes. The tiling BAC-arrays constitute a powerful tool for high-resolution genomic profiling suitable for cancer research and clinical diagnostics.
  •  
8.
  •  
9.
  • Lindgren, David, et al. (author)
  • Recurrent and multiple bladder tumors show conserved expression profiles.
  • 2008
  • In: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 8:June 30
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Urothelial carcinomas originate from the epithelial cells of the inner lining of the bladder and may appear as single or as multiple synchronous tumors. Patients with urothelial carcinomas frequently show recurrences after treatment making follow-up necessary. The leading hypothesis explaining the origin of meta- and synchronous tumors assumes a monoclonal origin. However, the genetic relationship among consecutive tumors has been shown to be complex in as much as the genetic evolution does not adhere to the chronological appearance of the metachronous tumors. Consequently, genetically less evolved tumors may appear chronologically later than genetically related but more evolved tumors. METHODS: Forty-nine meta- or synchronous urothelial tumors from 22 patients were analyzed using expression profiling, conventional CGH, LOH, and mutation analyses. RESULTS: We show by CGH that partial chromosomal losses in the initial tumors may not be present in the recurring tumors, by LOH that different haplotypes may be lost and that detected regions of LOH may be smaller in recurring tumors, and that mutations present in the initial tumor may not be present in the recurring ones. In contrast we show that despite apparent genomic differences, the recurrent and multiple bladder tumors from the same patients display remarkably similar expression profiles. CONCLUSION: Our findings show that even though the vast majority of the analyzed meta- and synchronous tumors from the same patients are not likely to have originated directly from the preceding tumor they still show remarkably similar expressions profiles. The presented data suggests that an expression profile is established early in tumor development and that this profile is stable and maintained in recurring tumors.
  •  
10.
  • Persson, Helena, et al. (author)
  • Analysis of fusion transcripts indicates widespread deregulation of snoRNAs and their host genes in breast cancer
  • 2020
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 146:12, s. 3343-3353
  • Journal article (peer-reviewed)abstract
    • Genomic rearrangements in cancer can join the sequences of two separate genes. Studies of such gene fusion events have mainly focused on identification of fusion proteins from the chimeric transcripts. We have previously investigated how fusions instead can affect the expression of intronic microRNA (miRNA) genes that are encoded within fusion gene partners. Here, we extend our analysis to small nucleolar RNAs (snoRNAs) that also are embedded within protein-coding or non-coding host genes. We found that snoRNA hosts are selectively enriched in fusion transcripts, like miRNA host genes, and that this enrichment is associated with all snoRNA classes. These structural changes may have functional consequences for the cell; proteins involved in the protein translation machinery are overrepresented among snoRNA host genes, a gene architecture assumed to be needed for closely coordinated expression of snoRNAs and host proteins. Our data indicate that this structure is frequently disrupted in cancer. We furthermore observed that snoRNA genes involved in fusions tend to associate with stronger promoters than the natural host, suggesting a mechanism that selects for snoRNA overexpression. In summary, we highlight a previously unexplored frequent structural change in cancer that affects important components of cellular physiology. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view