SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Höglund Mattias) ;pers:(Edenbrandt Lars)"

Sökning: WFRF:(Höglund Mattias) > Edenbrandt Lars

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tragardh, Elin, et al. (författare)
  • Referring physicians underestimate the extent of abnormalities in final reports from myocardial perfusion imaging
  • 2012
  • Ingår i: EJNMMI Research. - 2191-219X. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background It is important that referring physicians and other treating clinicians properly understand the final reports from diagnostic tests. The aim of the study was to investigate whether referring physicians interpret a final report for a myocardial perfusion scintigraphy (MPS) test in the same way that the reading nuclear medicine physician intended. Methods After viewing final reports containing only typical clinical verbiage and images, physicians in nuclear medicine and referring physicians (physicians in cardiology, internal medicine, and general practitioners) independently classified 60 MPS tests for the presence versus absence of ischemia/infarction according to objective grades of 1 to 5 (1 = no ischemia/infarction, 2 = probably no ischemia/infarction, 3 = equivocal, 4 = probable ischemia/infarction, and 5 = certain ischemia/infarction). When ischemia and/or infarction were thought to be present in the left ventricle, all physicians were also asked to mark the involved segments based on the 17-segment model. Results There was good diagnostic agreement between physicians in nuclear medicine and referring physicians when assessing the general presence versus absence of both ischemia and infarction (median squared kappa coefficient of 0.92 for both). However, when using the 17- segment model, compared to the physicians in nuclear medicine, 12 of 23 referring physicians underestimated the extent of ischemic area while 6 underestimated and 1 overestimated the extent of infarcted area. Conclusions Whereas referring physicians gain a good understanding of the general presence versus absence of ischemia and infarction from MPS test reports, they often underestimate the extent of any ischemic or infarcted areas. This may have adverse clinical consequences, and thus the language in final reports from MPS tests might be further improved and standardized.
  •  
2.
  •  
3.
  • Kaboteh, Reza, et al. (författare)
  • Bone Scan Index: a prognostic imaging biomarker for high-risk prostate cancer patients receiving primary hormonal therapy.
  • 2013
  • Ingår i: EJNMMI research. - 2191-219X. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The objective of this study was to explore the prognostic value of the Bone Scan Index (BSI) obtained at the time of diagnosis in a group of high-risk prostate cancer patients receiving primary hormonal therapy. Methods: This was a retrospective study based on 130 consecutive prostate cancer patients at high risk, based on clinical stage (T2c/T3/T4), Gleason score (8 to 10) and prostate-specific antigen (PSA) (> 20 ng/mL), who had undergone whole-body bone scans < 3 months after diagnosis and who received primary hormonal therapy. BSI was calculated using an automated method. Cox proportional-hazards regression models were used to investigate the association between clinical stage, Gleason score, PSA, BSI and survival. Discrimination between prognostic models was assessed using the concordance index (C-index). Results: In a multivariate analysis, Gleason score (p = 0.01) and BSI (p < 0.001) were associated with survival, but clinical stage (p = 0.29) and PSA (p = 0.57) were not prognostic. The C-index increased from 0.66 to 0.71 when adding BSI to a model including clinical stage, Gleason score and PSA. The 5-year probability of survival was 55% for patients without metastases, 42% for patients with BSI < 1, 31% for patients with BSI = 1 to 5, and 0% for patients with BSI > 5. Conclusions: BSI can be used as a complement to PSA to risk-stratify high-risk prostate cancer patients at the time of diagnosis. This imaging biomarker, reflecting the extent of metastatic disease, can be of value both in clinical trials and in patient management when deciding on treatment.
  •  
4.
  •  
5.
  • Ulmert, David, et al. (författare)
  • A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the bone scan index
  • 2012
  • Ingår i: European Urology. - : Elsevier BV. - 0302-2838 .- 1873-7560. ; 62:1, s. 78-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is little consensus on a standard approach to analysing bone scan images. The Bone Scan Index (BSI) is predictive of survival in patients with progressive prostate cancer (PCa), but the popularity of this metric is hampered by the tedium of the manual calculation. Objective: Develop a fully automated method of quantifying the BSI and determining the clinical value of automated BSI measurements beyond conventional clinical and pathologic features. Design, setting, and participants: We conditioned a computer-assisted diagnosis system identifying metastatic lesions on a bone scan to automatically compute BSI measurements. A training group of 795 bone scans was used in the conditioning process. Independent validation of the method used bone scans obtained ≤3 mo from diagnosis of 384 PCa cases in two large population-based cohorts. An experienced analyser (blinded to case identity, prior BSI, and outcome) scored the BSI measurements twice. We measured prediction of outcome using pretreatment Gleason score, clinical stage, and prostate-specific antigen with models that also incorporated either manual or automated BSI measurements. Measurements: The agreement between methods was evaluated using Pearson's correlation coefficient. Discrimination between prognostic models was assessed using the concordance index (C-index). Results and limitations: Manual and automated BSI measurements were strongly correlated (ρ = 0.80), correlated more closely (ρ = 0.93) when excluding cases with BSI scores ≥10 (1.8%), and were independently associated with PCa death (p < 0.0001 for each) when added to the prediction model. Predictive accuracy of the base model (C-index: 0.768; 95% confidence interval [CI], 0.702-0.837) increased to 0.794 (95% CI, 0.727-0.860) by adding manual BSI scoring, and increased to 0.825 (95% CI, 0.754-0.881) by adding automated BSI scoring to the base model. Conclusions: Automated BSI scoring, with its 100% reproducibility, reduces turnaround time, eliminates operator-dependent subjectivity, and provides important clinical information comparable to that of manual BSI scoring. © 2012 European Association of Urology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy