SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hackl Roman 1981) ;hsvcat:5"

Sökning: WFRF:(Hackl Roman 1981) > Samhällsvetenskap

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broberg, Sarah, 1983-, et al. (författare)
  • Integrated Algae Cultivation for Biofuels Production in Industrial Clusters
  • 2011
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Declining fossil resources and the issue of climate change caused by anthropogenic emissions of greenhouse gases make global action towards a more sustainable society inevitable. The EU decided in 2007 that 20 % of the union´s energy use should origin from renewable resources by the year 2020. One way of achieving this goal is to increase the utilisation of biofuels. Today 2nd generation biofuels are being developed. They are seen as a more sustainable solution than 1st generation biofuels since they have a higher area efficiency (more fuel produced per area) and the biomass can be cultivated at land which is not suitable for food crops. One of these 2nd generation biofuels are fuels derived from microalgae. In this study a thorough literature survey has been conducted in order to assess the State-of-the-Art in algae biofuels production. The literature review showed the importance of a supplementary function in conjunction with algae cultivation and therefore algae cultivation for municipal wastewater treatment and capturing CO2 emissions from industry was included in the study. It was assumed that all the wastewater of the city of Gothenburg, Sweden, was treated by algae cultivation. A computer model of the whole production process has been developed, covering; algae cultivation in conjunction with wastewater treatment, algae harvesting and biofuels production. Two different cases are modelled; a first case including combined biodiesel and biogas production, and a second case investigating only biogas production. Both cases have been evaluated in terms of product outputs, CO2 emissions savings and compared to each other in an economic sense. Utilising the nutrients in the wastewater of Gothenburg it is possible to cultivate 29 ktalgae/year. In the biogas case it is possible to produce 205 GWhbiogas/year. The biogas/biodiesel case showed a production potential of 63 GWhbiodiesel/year and 182 GWhbiogas/year. There is a deficit of carbon in the wastewater, hence CO2 is injected as flue gases from industrial sources. The biodiesel/biogas case showed an industrial CO2 sequestration capacity of 24 ktCO2/year while in the biogas case 22.6 ktCO2/year, could be captured. Estimating the total CO2 emissions savings showed 46 ktCO2/year in the biodiesel/biogas case and 38 ktCO2/year for the biogas case. The importance of including wastewater treatment in the process was confirmed, as it contributes with 13.7 ktCO2/year to the total CO2 emissions savings. Economic comparison of the two cases showed that biodiesel in conjunction with biogas production is advantageous compared to only biogas production. This is mainly due to the higher overall fuel yield and the high willingness to pay for biodiesel. The total incomes from biodiesel/biogas sales were calculated to 221 million SEK/year and 193 million SEK/year for biogas. It was found that the higher incomes from biodiesel/biogas sales repay the increased investment for the biodiesel process in approximately 3 years.
  •  
2.
  • Hansson, Julia, 1978, et al. (författare)
  • The potential for electrofuels production in Sweden utilizing fossil and biogenic CO2 point sources
  • 2017
  • Ingår i: Frontiers in Energy Research. - : Frontiers Media SA. - 2296-598X. ; 5:4, s. 12-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper maps, categorizes, and quantifies all major point sources of carbon dioxide (CO2) emissions from industrial and combustion processes in Sweden. The paper also estimates the Swedish technical potential for electrofuels (power-to-gas/fuels) based on carbon capture and utilization. With our bottom-up approach using European data-bases, we find that Sweden emits approximately 50 million metric tons of CO2 per year from different types of point sources, with 65% (or about 32 million tons) from biogenic sources. The major sources are the pulp and paper industry (46%), heat and power production (23%), and waste treatment and incineration (8%). Most of the CO2 is emitted at low concentrations (<15%) from sources in the southern part of Sweden where power demand generally exceeds in-region supply. The potentially recoverable emissions from all the included point sources amount to 45 million tons. If all the recoverable CO2 were used to produce electrofuels, the yield would correspond to 2–3 times the current Swedish demand for transportation fuels. The electricity required would correspond to about 3 times the current Swedish electricity supply. The current relatively few emission sources with high concentrations of CO2 (>90%, biofuel operations) would yield electrofuels corresponding to approximately 2% of the current demand for transportation fuels (corresponding to 1.5–2 TWh/year). In a 2030 scenario with large-scale biofuels operations based on lignocellulosic feedstocks, the potential for electrofuels production from high-concentration sources increases to 8–11 TWh/year. Finally, renewable electricity and production costs, rather than CO2 supply, limit the potential for production of electrofuels in Sweden.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy