SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haeggstrom JZ) "

Sökning: WFRF:(Haeggstrom JZ)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Di Gennaro, A., et al. (författare)
  • Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 115:8, s. 1907-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • Cysteinyl-leukotrienes (cys-LTs) are 5-lipoxygenase-derived lipid mediators involved in the pathogenesis and progression of inflammatory disorders, in particular asthma. We have previously found evidence linking these mediators to increased levels of proteolytic enzymes in tissue specimens of human abdominal aortic aneurysm (AAA). Here we show that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against a strong aorta dilatation (>50% increase = aneurysm) in a mouse model of CaCl2-induced AAA at a dose comparable to human medical practice. Analysis of tissue extracts revealed that montelukast reduces the levels of matrix metalloproteinase-9 (MMP-9) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the aortic wall. Furthermore, aneurysm progression was specifically mediated through CysLT1 signaling since a selective CysLT2 antagonist was without effect. A significantly reduced vessel dilatation is also observed when treatment with montelukast is started days after aneurysm induction, suggesting that the drug not only prevents but also stops and possibly reverts an already ongoing degenerative process. Moreover, montelukast reduced the incidence of aortic rupture and attenuated the AAA development in two additional independent models, i.e., angiotensin II- and porcine pancreatic elastase-induced AAA, respectively. Our results indicate that cys-LTs are involved in the pathogenesis of AAA and that antagonism of the CysLT1 receptor is a promising strategy for preventive and therapeutic treatment of this clinically silent and highly lethal disease.
  •  
2.
  • Cebula, Marcus, et al. (författare)
  • Catalytic Conversion of Lipophilic Substrates by Phase constrained Enzymes in the Aqueous or in the Membrane Phase
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Both soluble and membrane-bound enzymes can catalyze the conversion of lipophilic substrates. The precise substrate access path, with regard to phase, has however, until now relied on conjecture from enzyme structural data only (certainly giving credible and valuable hypotheses). Alternative methods have been missing. To obtain the first experimental evidence directly determining the access paths (of lipophilic substrates) to phase constrained enzymes we here describe the application of a BODIPY-derived substrate (PS1). Using this tool, which is not accessible to cytosolic enzymes in the presence of detergent and, by contrast, not accessible to membrane embedded enzymes in the absence of detergent, we demonstrate that cytosolic and microsomal glutathione transferases (GSTs), both catalyzing the activation of PS1, do so only within their respective phases. This approach can serve as a guideline to experimentally validate substrate access paths, a fundamental property of phase restricted enzymes. Examples of other enzyme classes with members in both phases are xenobiotic-metabolizing sulphotransferases/UDP-glucuronosyl transferases or epoxide hydrolases. Since specific GSTs have been suggested to contribute to tumor drug resistance, PS1 can also be utilized as a tool to discriminate between phase constrained members of these enzymes by analyzing samples in the absence and presence of Triton X-100.
  •  
3.
  • Lundstrom, Susanna L., et al. (författare)
  • Allergic Asthmatics Show Divergent Lipid Mediator Profiles from Healthy Controls Both at Baseline and following Birch Pollen Provocation
  • 2012
  • Ingår i: PLOS ONE. - 1932-6203. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Asthma is a respiratory tract disorder characterized by airway hyper-reactivity and chronic inflammation. Allergic asthma is associated with the production of allergen-specific IgE and expansion of allergen-specific T-cell populations. Progression of allergic inflammation is driven by T-helper type 2 (Th2) mediators and is associated with alterations in the levels of lipid mediators. Objectives: Responses of the respiratory system to birch allergen provocation in allergic asthmatics were investigated. Eicosanoids and other oxylipins were quantified in the bronchoalveolar lumen to provide a measure of shifts in lipid mediators associated with allergen challenge in allergic asthmatics. Methods: Eighty-seven lipid mediators representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened via LC-MS/MS following off-line extraction of bronchoalveolar lavage fluid (BALF). Multivariate statistics using OPLS were employed to interrogate acquired oxylipin data in combination with immunological markers. Results: Thirty-two oxylipins were quantified, with baseline asthmatics possessing a different oxylipin profile relative to healthy individuals that became more distinct following allergen provocation. The most prominent differences included 15-LOX-derived omega-3 and omega-6 oxylipins. Shared-and-Unique-Structures (SUS)-plot modeling showed a correlation (R-2 = 0.7) between OPLS models for baseline asthmatics ((RY)-Y-2[cum] = 0.87, Q(2)[cum] = 0.51) and allergen-provoked asthmatics ((RY)-Y-2[cum] = 0.95, Q(2)[cum] = 0.73), with the majority of quantified lipid mediators and cytokines contributing equally to both groups. Unique structures for allergen provocation included leukotrienes (LTB4 and 6-trans-LTB4), CYP-derivatives of linoleic acid (epoxides/diols), and IL-10. Conclusions: Differences in asthmatic relative to healthy profiles suggest a role for 15-LOX products of both omega-6 and omega-3 origin in allergic inflammation. Prominent differences at baseline levels indicate that non-symptomatic asthmatics are subject to an underlying inflammatory condition not observed with other traditional mediators. Results suggest that oxylipin profiling may provide a sensitive means of characterizing low-level inflammation and that even individuals with mild disease display distinct phenotypic profiles, which may have clinical ramifications for disease.
  •  
4.
  • Schroder, Oliver, et al. (författare)
  • 15-deoxy-Delta12,14-prostaglandin J2 inhibits the expression of microsomal prostaglandin E synthase type 2 in colon cancer cells
  • 2006
  • Ingår i: Journal of Lipid Research. - : American Society for Biochemistry and Molecular Biology. - 1539-7262 .- 0022-2275. ; 47:5, s. 1071-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostaglandin (PG) E(2) (PGE(2)) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE(2) is accomplished by conversion of the cyclooxygenase (COX) product PGH(2) by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (mPGES-1) and type 2 (mPGES-2) were found to be overexpressed in colorectal cancer (CRC); however, the role and regulation of these enzymes in this malignancy are not yet fully understood. Here, we report that the cyclopentenone prostaglandins (CyPGs) 15-deoxy-Delta(12,14)-PGJ(2) and PGA(2) downregulate mPGES-2 expression in the colorectal carcinoma cell lines Caco-2 and HCT 116 without affecting the expression of any other PGES or COX. Inhibition of mPGES-2 was subsequently followed by decreased microsomal PGES activity. These effects were mediated via modulation of the cellular thiol-disulfide redox status but did not involve activation of the peroxisome proliferator-activated receptor gamma or PGD(2) receptors. CyPGs had antiproliferative properties in vitro; however, this biological activity could not be directly attributed to decreased PGES activity because it could not be reversed by adding PGE(2). Our data suggest that there is a feedback mechanism between PGE(2) and CyPGs that implicates mPGES-2 as a new potential target for pharmacological intervention in CRC.
  •  
5.
  • Tholander, F, et al. (författare)
  • Leukotriene A4 Hydrolase, Insights into the Molecular Evolution by Homology Modeling and Mutational Analysis of Enzyme from Saccharomyces cerevisiae
  • 2005
  • Ingår i: Journal of Biological Chemistry. - : ASBMB. - 1083-351X .- 0021-9258. ; 280:39, s. 33477-33486
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian leukotriene A4 (LTA4) hydrolase is a bifunctional zinc metalloenzyme possessing an Arg/Ala aminopeptidase and an epoxide hydrolase activity, which converts LTA4 into the chemoattractant LTB4. We have previously cloned an LTA4 hydrolase from Saccharomyces cerevisiae with a primitive epoxide hydrolase activity and a Leu aminopeptidase activity, which is stimulated by LTA4. Here we used a modeled structure of S. cerevisiae LTA4 hydrolase, mutational analysis, and binding studies to show that Glu-316 and Arg-627 are critical for catalysis, allowing us to a propose a mechanism for the epoxide hydrolase activity. Guided by the structure, we engineered S. cerevisiae LTA4 hydrolase to attain catalytic properties resembling those of human LTA4 hydrolase. Thus, six consecutive point mutations gradually introduced a novel Arg aminopeptidase activity and caused the specific Ala and Pro aminopeptidase activities to increase 24 and 63 times, respectively. In contrast to the wild type enzyme, the hexuple mutant was inhibited by LTA4 for all tested substrates and to the same extent as for the human enzyme. In addition, these mutations improved binding of LTA4 and increased the relative formation of LTB4, whereas the turnover of this substrate was only weakly affected. Our results suggest that during evolution, the active site of an ancestral eukaryotic zinc aminopeptidase has been reshaped to accommodate lipid substrates while using already existing catalytic residues for a novel, gradually evolving, epoxide hydrolase activity. Moreover, the unique ability to catalyze LTB4 synthesis appears to be the result of multiple and subtle structural rearrangements at the catalytic center rather than a limited set of specific amino acid substitutions.
  •  
6.
  • Tholander, Fredrik, et al. (författare)
  • Structure-Based Dissection of the Active Site Chemistry of Leukotriene A4 Hydrolase: Implications for M1 Aminopeptidases and Inhibitor Design
  • 2008
  • Ingår i: Chemistry and Biology. - : Cell Press. - 1879-1301 .- 1074-5521. ; 15:9, s. 920-929
  • Tidskriftsartikel (refereegranskat)abstract
    • M1 aminopeptidases comprise a large family of biologically important zinc enzymes. We show that peptide turnover by the M1 prototype, leukotriene A4 hydrolase/aminopeptidase, involves a shift in substrate position associated with exchange of zinc coordinating groups, while maintaining the overall coordination geometry. The transition state is stabilized by residues conserved among M1 members and in the final reaction step, Glu-296 of the canonical zinc binding HEXXH motif shuffles a proton from the hydrolytic water to the leaving group. Tripeptide substrates bind along the conserved GXMEN motif, precisely occupying the distance between Glu-271 and Arg-563, whereas the Arg specificity is governed by a narrow S1 pocket capped with Asp-375. Our data provide detailed insights to the active site chemistry of M1 aminopeptidases and will aid in the development of novel enzyme inhibitors.
  •  
7.
  •  
8.
  •  
9.
  • Ahmad, Shabbir, et al. (författare)
  • Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Proteins and Proteomics. - 1570-9639 .- 1878-1454. ; 1854:1010 Pt A, s. 1365-1371
  • Tidskriftsartikel (refereegranskat)abstract
    • Human microsomal glutathione transferase 2 (MGST2) is a trimeric integral membrane protein that belongs to the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family. The mammalian MAPEG family consists of six members where four have been structurally determined. MGST2 activates glutathione to form a thiolate that is crucial for GSH peroxidase activity and GSH conjugation reactions with electrophilic substrates, such as 1-chloro-2,4-dinitrobenzene (CDNB). Several studies have shown that MGST2 is able to catalyze a GSH conjugation reaction with the epoxide LTA(4) forming the pro-inflammatory LTC4. Unlike its closest homologue leukotriene C-4 synthase (LTC4S), MGST2 appears to activate its substrate GSH using only one of the three potential active sites [Ahmad S, et al. (2013) Biochemistry. 52, 1755-1764]. In order to demonstrate and detail the mechanism of one-third of the sites reactivity of MGST2, we have determined the enzyme oligomeric state, by Blue native PAGE and Differential Scanning Calorimetry, as well as the stoichiometty of substrate and substrate analog inhibitor binding to MGST2, using equilibrium dialysis and Isothermal Titration Calorimetry, respectively. Global simulations were used to fit kinetic data to determine the catalytic mechanism of MGST2 with GSH and CDNB (1-chloro-2,4-dinitrobenzene) as substrates. The best fit was observed with 1/3 of the sites catalysis as compared with a simulation where all three sites were active. In contrast to LTC4S, MGST2 displays a 1/3 the sites reactivity, a mechanism shared with the more distant family member MGST1 and recently suggested also for microsomal prostaglandin E synthase-1.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy