SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hagg E) ;pers:(Pedersen NL)"

Search: WFRF:(Hagg E) > Pedersen NL

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • van Dongen, J, et al. (author)
  • DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:6, s. 2148-2162
  • Journal article (peer-reviewed)abstract
    • DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10−7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3–82%) of the aggression–methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Hagg, S, et al. (author)
  • Short telomere length is associated with impaired cognitive performance in European ancestry cohorts
  • 2017
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 7:4, s. e1100-
  • Journal article (peer-reviewed)abstract
    • The association between telomere length (TL) dynamics on cognitive performance over the life-course is not well understood. This study meta-analyses observational and causal associations between TL and six cognitive traits, with stratifications on APOE genotype, in a Mendelian Randomization (MR) framework. Twelve European cohorts (N=17 052; mean age=59.2±8.8 years) provided results for associations between qPCR-measured TL (T/S-ratio scale) and general cognitive function, mini-mental state exam (MMSE), processing speed by digit symbol substitution test (DSST), visuospatial functioning, memory and executive functioning (STROOP). In addition, a genetic risk score (GRS) for TL including seven known genetic variants for TL was calculated, and used in associations with cognitive traits as outcomes in all cohorts. Observational analyses showed that longer telomeres were associated with better scores on DSST (β=0.051 per s.d.-increase of TL; 95% confidence interval (CI): 0.024, 0.077; P=0.0002), and MMSE (β=0.025; 95% CI: 0.002, 0.047; P=0.03), and faster STROOP (β=−0.053; 95% CI: −0.087, −0.018; P=0.003). Effects for DSST were stronger in APOE ɛ4 non-carriers (β=0.081; 95% CI: 0.045, 0.117; P=1.0 × 10−5), whereas carriers performed better in STROOP (β=−0.074; 95% CI: −0.140, −0.009; P=0.03). Causal associations were found for STROOP only (β=−0.598 per s.d.-increase of TL; 95% CI: −1.125, −0.072; P=0.026), with a larger effect in ɛ4-carriers (β=−0.699; 95% CI: −1.330, −0.069; P=0.03). Two-sample replication analyses using CHARGE summary statistics showed causal effects between TL and general cognitive function and DSST, but not with STROOP. In conclusion, we suggest causal effects from longer TL on better cognitive performance, where APOE ɛ4-carriers might be at differential risk.
  •  
9.
  • Howe, LJ, et al. (author)
  • Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:65, s. 581-
  • Journal article (peer-reviewed)abstract
    • Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view