SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haines Andy) srt2:(2015-2018);hsvcat:1"

Sökning: WFRF:(Haines Andy) > (2015-2018) > Naturvetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindgren, Elisabet, et al. (författare)
  • Sustainable food systems - a health perspective
  • 2018
  • Ingår i: Sustainability Science. - : Springer Science and Business Media LLC. - 1862-4065 .- 1862-4057. ; 13:6, s. 1505-1517
  • Tidskriftsartikel (refereegranskat)abstract
    • Malnutrition in all forms, ranging from undernourishment to obesity and associated diet-related diseases, is one of the leading causes of death worldwide, while food systems often have major environmental impacts. Rapid global population growth and increases in demands for food and changes in dietary habits create challenges to provide universal access to healthy food without creating negative environmental, economic, and social impacts. This article discusses opportunities for and challenges to sustainable food systems from a human health perspective by making the case for avoiding the transition to unhealthy less sustainable diets (using India as an exemplar), reducing food waste by changing consumer behaviour (with examples from Japan), and using innovations and new technologies to reduce the environmental impact of healthy food production. The article touches upon two of the challenges to achieving healthy sustainable diets for a global population, i.e., reduction on the yield and nutritional quality of crops (in particular vegetables and fruits) due to climate change; and trade-offs between food production and industrial crops. There is an urgent need to develop and implement policies and practices that provide universal access to healthy food choices for a growing world population, whilst reducing the environmental footprint of the global food system.
  •  
2.
  • Burkhard, Benjamin, et al. (författare)
  • Mapping and assessing ecosystem services in the EU - Lessons learned from the ESMERALDA approach of integration
  • 2018
  • Ingår i: One Ecosystem. - : Pensoft Publishers. - 2367-8194. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Union (EU) Horizon 2020 Coordination and Support Action ESMERALDA aimed at developing guidance and a flexible methodology for Mapping and Assessment of Ecosystems and their Services (MAES) to support the EU member states in the implementation of the EU Biodiversity Strategy’s Target 2 Action 5. ESMERALDA’s key tasks included network creation, stakeholder engagement, enhancing ecosystem services mapping and assessment methods across various spatial scales and value domains, work in case studies and support of EU member states in MAES implementation. Thus ESMERALDA aimed at integrating various project outcomes around four major strands: i) Networking, ii) Policy, iii) Research and iv) Application. The objective was to provide guidance for integrated ecosystem service mapping and assessment that can be used for sustainable decision-making in policy, business, society, practice and science at EU, national and regional levels. This article presents the overall ESMERALDA approach of integrating the above-mentioned project components and outcomes and provides an overview of how the enhanced methods were applied and how they can be used to support MAES implementation in the EU member states. Experiences with implementing such a large pan-European Coordination and Support Action in the context of EU policy are discussed and recommendations for future actions are given.
  •  
3.
  • Gasparrini, Antonio, et al. (författare)
  • Projections of temperature-related excess mortality under climate change scenarios
  • 2017
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 1:9, s. e360-e367
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes.Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (-3·0 to 9·3) in Central America to 12·7% (-4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy