Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hajat Shakoor) "

Sökning: WFRF:(Hajat Shakoor)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
  • Bunker, Aditi, et al. (författare)
  • Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence
  • 2016
  • Ingår i: EBioMedicine. - 2352-3964. ; 6, s. 258-268
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Climate change and rapid population ageing are significant public health challenges. Understanding which health problems are affected by temperature is important for preventing heat and cold-related deaths and illnesses, particularly in the elderly. Here we present a systematic review and meta-analysis on the effects of ambient hot and cold temperature (excluding heat/cold wave only studies) on elderly (65+ years) mortality and morbidity.Methods: Time-series or case-crossover studies comprising cause-specific cases of elderly mortality (n = 3,933,398) or morbidity (n = 12,157,782) were pooled to obtain a percent change (%) in risk for temperature exposure on cause-specific disease outcomes using a random-effects meta-analysis. Results: A 1 degrees C temperature rise increased cardiovascular (3.44%, 95% CI 3.10-3.78), respiratory (3.60%, 3.18-4.02), and cerebrovascular (1.40%, 0.06-2.75) mortality. A 1 degrees C temperature reduction increased respiratory (2.90%, 1.84-3.97) and cardiovascular (1.66%, 1.19-2.14) mortality. The greatest risk was associated with cold-induced pneumonia (6.89%, 20-12.99) and respiratory morbidity (4.93% 1.54-8.44). A 1 degrees C temperature rise increased cardiovascular, respiratory, diabetes mellitus, genitourinary, infectious disease and heat-related morbidity.Discussion: Elevated risks for the elderly were prominent for temperature-induced cerebrovascular, cardiovascular, diabetes, genitourinary, infectious disease, heat-related, and respiratory outcomes. These risks will likely increase with climate change and global ageing.
  • Gasparrini, Antonio, et al. (författare)
  • Projections of temperature-related excess mortality under climate change scenarios
  • 2017
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 1:9, s. e360-e367
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes.Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (-3·0 to 9·3) in Central America to 12·7% (-4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.
  • Ingole, Vijendra, et al. (författare)
  • Socioenvironmental factors associated with heat and cold-related mortality in Vadu HDSS, western India : a population-based case-crossover study
  • 2017
  • Ingår i: International journal of biometeorology. - : Springer. - 0020-7128 .- 1432-1254. ; 61:10, s. 1797-1804
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient temperatures (heat and cold) are associated with mortality, but limited research is available about groups most vulnerable to these effects in rural populations. We estimated the effects of heat and cold on daily mortality among different sociodemographic groups in the Vadu HDSS area, western India. We studied all deaths in the Vadu HDSS area during 2004-2013. A conditional logistic regression model in a case-crossover design was used. Separate analyses were carried out for summer and winter season. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for total mortality and population subgroups. Temperature above a threshold of 31 A degrees C was associated with total mortality (OR 1.48, CI = 1.05-2.09) per 1 A degrees C increase in daily mean temperature. Odds ratios were higher among females (OR 1.93; CI = 1.07-3.47), those with low education (OR 1.65; CI = 1.00-2.75), those owing larger agricultural land (OR 2.18; CI = 0.99-4.79), and farmers (OR 1.70; CI = 1.02-2.81). In winter, per 1 A degrees C decrease in mean temperature, OR for total mortality was 1.06 (CI = 1.00-1.12) in lag 0-13 days. High risk of cold-related mortality was observed among people occupied in housework (OR = 1.09; CI = 1.00-1.19). Our study suggests that both heat and cold have an impact on mortality particularly heat, but also, to a smaller degree, cold have an impact. The effects may differ partly by sex, education, and occupation. These findings might have important policy implications in preventing heat and cold effects on particularly vulnerable groups of the rural populations in low and middle-income countries with hot semi-arid climate.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy