SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hallbeck Martin) ;pers:(Blomqvist Anders)"

Sökning: WFRF:(Hallbeck Martin) > Blomqvist Anders

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amandusson, Åsa, 1974-, et al. (författare)
  • Estrogen-induced alterations of spinal cord enkephalin gene expression
  • 1999
  • Ingår i: Pain. - : Elsevier. - 0304-3959 .- 1872-6623. ; 83:2, s. 243-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Enkephalin-synthesizing neurons in the super®cial laminae of the spinal and trigeminal dorsal horn are critical components of the endogenous pain-modulatory system. We have previously demonstrated that these neurons display intracellular estrogen receptors, suggesting that estrogen can potentially influence their enkephalin expression. By using Northern blot, we now show that a bolus injection of estrogen results in a rapid increase in spinal cord enkephalin mRNA levels in ovariectomized female rats. Thus, 4 h after estrogen administration the enkephalin mRNA-expression in the lumbar spinal cord was on average 68% higher (P , 0:05) than in control animals injected with vehicle only. A small increase in the amount of enkephalin mRNA was also seen after 8 h (P , 0:05), whereas no difference between estrogen-injected and control animals was found after 24 h or at time periods shorter than 4 h. Taken together with the previous anatomical data, the present findings imply that estrogen has an acute effect on spinal opioid levels in areas involved in the transmission of nociceptive information.
  •  
2.
  • Elander, Louise, 1980-, et al. (författare)
  • IL-1β and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1
  • 2007
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 292:1, s. R258-R267
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1β or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E2 by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1β, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1β induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wildtype controls. These data suggest that IL-1β and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1β and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions. Copyright © 2007 the American Physiological Society.
  •  
3.
  • Elander, Louise, 1980-, et al. (författare)
  • Prostaglandin E2 receptors in IL-1β induced anorexia
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Anorexia in response to immune challenge by Interleukin-1β (IL-1β) has been shown to be dependent on Prostaglandin E2 (PGE2) produced by the inducible enzyme microsomal prostaglandin E synthase-1 (mPGES-1). However, it is not known which of the four known PGE2 receptors EP1-4, encoded by the genes Ptger 1-4, that mediates the PGE2-induced anorexia. Here we examined food intake in mice deficient in EP1, EP2 and EP3, respectively, during normal conditions and following treatment with IL-1β. Neither of the gene deletions affected baseline food intake, and all the three genotypes displayed anorexia following IL-1β injection, similar to wild type mice. Previous work has demonstrated that the EP3 receptor is critical for the generation of fever, and that EP1 and EP3 receptors mediate inflammationinduced activation of the hypothalamic-pituitary-adrenal (HPA) axis. The present data, showing intact anorexigenic responses in EP1 and EP3 deficient mice, as well as in mice with deletion of the EP2 receptor, hence suggest that PGE2-elicited acute phase responses are mediated by distinct set or sets of PGE2-receptors.
  •  
4.
  • Engblom, David, et al. (författare)
  • Distribution of prostaglandin EP3 and EP4 receptor mRNA in the rat parabrachial nucleus
  • 2000
  • Ingår i: Neuroscience Letters. - : Elsevier Science B.V., Amsterdam.. - 0304-3940 .- 1872-7972. ; 281:2-3, s. 163-166
  • Tidskriftsartikel (refereegranskat)abstract
    • By using in situ hybridization, the distribution of mRNA for the PGE2 receptors EP3 and EP4 was examined in the rat parabrachial nucleus (PB), a major brain stem relay for autonomic and nociceptive processing. EP3 receptor mRNA was present in most subnuclei, with the densest labeling in the external lateral, dorsal lateral, superior lateral, central lateral and Kölliker–Fuse nuclei. EP4 receptor mRNA expressing cells had a more restricted distribution, largely being confined to the superior lateral and adjacent parts of the dorsal and central lateral nuclei in a pattern complementary to that for EP3 receptor mRNA. These findings suggest that EP3 and EP4 receptors in PB have distinct functional roles that include nociceptive processing, blood pressure regulation and feeding behavior.
  •  
5.
  • Hallbeck, Martin, 1970-, et al. (författare)
  • Distribution of preprovasopressin mRNA in the rat central nervous system
  • 1999
  • Ingår i: Journal of Comparative Neurology. - 0021-9967 .- 1096-9861. ; 411:2, s. 181-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Vasopressin released in the central nervous system has been shown to be involved both in homeostatic mechanisms (e.g., water balance, thermoregulation, cardiovascular regulation, metabolism, and antinociception) and in higher brain functions (e.g., social recognition and communication, and learning and memory). Many nuclear groups have been proposed to synthesize vasopressin, but available data are conflicting. We have used a sensitive in situ hybridization technique to identify the distribution of the neurons that may be the origin of the vasopressin in the central nervous system of the male Sprague-Dawley rat. Vasopressin mRNA-expressing neurons were most abundant in the hypothalamus (e.g., the paraventricular, supraoptic, and suprachiasmatic nuclei) but were also seen in the medial amygdaloid nucleus, the bed nucleus of stria terminalis, and the nucleus of the horizontal diagonal band. Previously unreported vasopressinergic neurons were seen in the entorhinal and piriform cortices, the ventral lateral portion of the parabrachial nucleus, the pedunculopontine nucleus, and the rostral part of the ventral periaqueductal gray matter and the adjacent portion of the mesencephalic reticular nucleus. Vasopressin mRNA expression suggestive of neuronal labeling was seen in the pyramidal layer of the CA1–3 fields and the dentate gyrus of the hippocampus. In addition, vasopressin mRNA expression, probably representing axonal mRNA, was detected over the hypothalamopituitary tract. No or insignificant preprovasopressin mRNA expression was present in the cerebellum, locus coeruleus, subcoeruleus, or the spinal cord. These findings provide novel information on the distribution of vasopressin neurons that are important for our understanding of how vasopressin acts in the brain.
  •  
6.
  • Hallbeck, Martin, et al. (författare)
  • Effect of Stimulation of the Paraventricular Hypothalamic Nucleus on Noxious-Evoked Fos-immunoreactlvity In the Rat lumbar Spinal Cord
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The paraventricular nucleus of the hypothalamus (PVH) provides a prominent descending projection to the superficial dorsal horn, and contains a number of neuropeptides that are know to influence nociceptive processing. In the present study, we injected formalin subcutaneously into the hind paws of unanesthetized rats and studied the noxious-evoked Fos protein expression in the dorsal horn following simultaneous unilateral injection of the glutamate receptor agonist kainic acid into the PVH. Although some cases displayed less Fos-inununoreactivity in the lumbar spinal cord on the side ipsilateral to the PVH activation than on the contralateral side, others displayed no side differences, and one case showed more labeling in the ipsilateral dorsal horn than on the contralateral side, Because different parts of the PVH were activated in the different experiments, the present observations suggest that the different peptide expressing populations of spinal cordprojecting neurons in PVH may have different, and perhaps opposing functions in the spinal dorsal horn.
  •  
7.
  • Hallbeck, Martin, 1970-, et al. (författare)
  • Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord
  • 2001
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 433:2, s. 222-238
  • Tidskriftsartikel (refereegranskat)abstract
    • The paraventricular hypothalamic nucleus (PVH) exerts many of its regulatory functions through projections to spinal cord neurons that control autonomic and sensory functions. By using in situ hybridization histochemistry in combination with retrograde tract tracing, we analyzed the peptide expression among neurons in the rat PVH that send axons to the spinal cord. Projection neurons were labeled by immunohistochemical detection of retrogradely transported cholera toxin subunit B, and radiolabeled long riboprobes were used to identify neurons containing dynorphin, enkephalin, or oxytocin mRNA. Of the spinally projecting neurons in the PVH, approximately 40% expressed dynorphin mRNA, 40% expressed oxytocin mRNA, and 20% expressed enkephalin mRNA. Taken together with our previous findings on the distribution of vasopressin-expressing neurons in the PVH (Hallbeck and Blomqvist [1999] J. Comp. Neurol. 411:201–211), the results demonstrated that the different PVH subdivisions display distinct peptide expression patterns among the spinal cord–projecting neurons. Thus, the lateral parvocellular subdivision contained large numbers of spinal cord–projecting neurons that express any of the four investigated peptides, whereas the ventral part of the medial parvocellular subdivision displayed a strong preponderance for dynorphin- and vasopressin-expressing cells. The dorsal parvocellular subdivision almost exclusively contained dynorphin- and oxytocin-expressing spinal cord–projecting neurons. This parcellation of the peptide-expressing neurons suggested a functional diversity among the spinal cord–projecting subdivisions of the PVH that provide an anatomic basis for its various and distinct influences on autonomic and sensory processing at the spinal level.
  •  
8.
  • Hallbeck, Martin, et al. (författare)
  • Preprovasopressin mRNA is not present in dorsal root ganglia of the rat
  • 1996
  • Ingår i: Neuroscience Letters. - : Elsevier BV. - 0304-3940 .- 1872-7972. ; 209:10, s. 125-128
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunohistochemical studies on colchic ine-treated rats have suggested that more than half of the neurons in dorsal root ganglia (DRG) contain vasopressin. Thus, vasopressin would be the most commonly found peptide in DRG neurons. In the present study we have reexamined the presence of vasopressin in DRG neurons, using a sensitive in situ hybridization method employing long riboprobes that will detect very small amounts of mRNA. The C3, C6, T2, T12, L2 and L5 DRG were studied. None of these ganglia contained any preprovasopressin mRNA. Yet, dense labeling for preprovasopressin mRNA was seen on simultaneously processed hypothalamic sections and a heavy preprotachykinin mRNA expression was seen in adjacent DRG sections. These findings demonstrate that vasopressin is not produced in DRG in normal rats.
  •  
9.
  • Hallbeck, Martin, 1970-, et al. (författare)
  • Spinal cord-projecting vasopressinergic neurons in the rat paraventricular hypothalamus
  • 1999
  • Ingår i: Journal of Comparative Neurology. - 0021-9967 .- 1096-9861. ; 411:2, s. 201-211
  • Tidskriftsartikel (refereegranskat)abstract
    • The paraventricular hypothalamic nucleus (PVH) is a key structure for the maintenance of homeostasis. Homeostatic regulation includes modulation of signaling in the spinal cord. This may be exerted by neurons in the PVH with spinal projections. However, the PVH is not a homogeneous structure, but consists of anatomically and functionally distinct subdivisions. In this study, we have analyzed the distribution of spinal cord-projecting PVH neurons that express vasopressin, an important neuropeptide in autonomic regulation. Vasopressinergic neurons were identified with a radiolabeled riboprobe complementary to vasopressin mRNA combined with immunohistochemical labeling of retrogradely transported cholera toxin subunit b in spinally projecting neurons. More than 40% of the spinally projecting neurons in the PVH of naive Sprague-Dawley rats were found to express vasopressin mRNA. The lateral parvocellular subdivision and the ventral part of the medial parvocellular subdivision contained the densest distribution of spinal cord-projecting vasopressin mRNA-expressing neurons. The magnocellular subdivisions displayed large numbers of vasopressin mRNA-expressing neurons, but very few of those projected to the spinal cord. The dorsal parvocellular subdivision contained a large number of spinally projecting neurons, but very few of those expressed vasopressin mRNA. These findings show that the PVH gives rise to a major vasopressinergic projection to the spinal cord and that the spinal cord-projecting vasopressinergic neurons are parceled into anatomically distinct cell groups. This provides an anatomical basis for a selective activation of functionally different groups in the PVH as part of a behaviorally adaptive response, including modulation of autonomic activity and pain processing at the spinal level.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy