SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hallbeck Martin) ;pers:(Cedazo Minguez Angel)"

Sökning: WFRF:(Hallbeck Martin) > Cedazo Minguez Angel

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zheng, Lin, et al. (författare)
  • Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system.
  • 2012
  • Ingår i: Translational Neurodegeneration. - : BioMed Central. - 2047-9158. ; 1:1, s. 19-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAmyloid beta peptide (Aβ) is the main component of extraneuronal senile plaques typical of Alzheimer’s disease (AD) brains. Although Aβ is produced by normal neurons, it is shown to accumulate in large amounts within neuronal lysosomes in AD. We have recently shown that under normal conditions the majority of Aβ is localized extralysosomally, while oxidative stress significantly increases intralysosomal Aβ content through activation of macroautophagy. It is also suggested that impaired Aβ secretion and resulting intraneuronal increase of Aβ can contribute to AD pathology. However, it is not clear how Aβ is distributed inside normal neurons, and how this distribution is effected when Aβ secretion is inhibited.MethodsUsing retinoic acid differentiated neuroblastoma cells and neonatal rat cortical neurons, we studied intracellular distribution of Aβ by double immunofluorescence microscopy for Aβ40 or Aβ42 and different organelle markers. In addition, we analysed the effect of tetanus toxin-induced exocytosis inhibition on the intracellular distribution of Aβ.ResultsUnder normal conditions, Aβ was found in the small cytoplasmic granules in both neurites and perikarya. Only minor portion of Aβ was colocalized with trans-Golgi network, Golgi-derived vesicles, early and late endosomes, lysosomes, and synaptic vesicles, while the majority of Aβ granules were not colocalized with any of these structures. Furthermore, treatment of cells with tetanus toxin significantly increased the amount of intracellular Aβ in both perikarya and neurites. Finally, we found that tetanus toxin increased the levels of intralysosomal Aβ although the majority of Aβ still remained extralysosomally.ConclusionOur results indicate that most Aβ is not localized to Golgi-related structures, endosomes, lysosomes secretory vesicles or other organelles, while the suppression of Aβ secretion increases intracellular intra- and extralysosomal Aβ.
  •  
2.
  • Zheng, Lin, et al. (författare)
  • Intracellular localization of amyloid beta peptide in SH-SY5Y neuroblastoma cells
  • 2013
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 37:4, s. 713-733
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta peptide (A beta), the main component of Alzheimer's disease (AD) senile plaques, has been found to accumulate within the lysosomal compartment of AD neurons. We have previously shown that in differentiated SH-SY5Y neuroblastoma cells cultured under normal conditions, the majority of A beta is localized extralysosomally, while oxidative stress significantly increases intralysosomal A beta content through activation of macroautophagy. It is, however, not clear which cellular compartments contain extralysosomal A beta in intact SH-SY5Y cells, and how oxidative stress influences the distribution of extralysosomal A beta. Using confocal laser scanning microscopy and immunoelectron microscopy, we showed that in differentiated neuroblastoma cells cultured under normal conditions A beta (A beta(40), A beta(42), and A beta oligomers) is colocalized with both membrane-bound organelles (endoplasmic reticulum, Golgi complexes, multivesicular bodies/late endosomes, lysosomes, exocytotic vesicles and mitochondria) and non-membrane-bound cytosolic structures. Neuroblastoma cells stably transfected with A beta PP Swedish KM670/671NL double mutation showed enlarged amount of A beta colocalized with membrane compartments. Suppression of exocytosis by 5 nM tetanus toxin resulted in a significant increase of the amount of cytosolic A beta as well as A beta colocalized with exocytotic vesicles, endoplasmic reticulum, Golgi complexes, and lysosomes. Hyperoxia increased A beta localization in the endoplasmic reticulum, Golgi apparatus, mitochondria, and lysosomes, but not in the secretory vesicles. These results indicate that in SH-SY5Y neuroblastoma cells intracellular A beta is not preferentially localized to any particular organelle and, to a large extent, is secreted from the cells. Challenging cells to hyperoxia, exocytosis inhibition, or A beta overproduction increased intracellular A beta levels but did not dramatically changed its localization pattern.
  •  
3.
  • Zheng, Lin, et al. (författare)
  • Macroautophagy-generated increase of lysosomal amyloid beta-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells
  • 2011
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 7:12, s. 1528-1545
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing evidence suggests the toxicity of intracellular amyloid beta-protein (A beta) to neurons, as well as the involvement of oxidative stress in Alzheimer disease (AD). Here we show that normobaric hyperoxia (exposure of cells to 400/c oxygen for five days, and consequent activation of macroautophagy and accumulation of A beta within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as A beta monomers and oligomers, (2) increased reactive oxygen species production, and (3) enhanced apoptosis. Oxidant-induced apoptosis positively correlated with cellular A beta production, being the highest in cells that were stably transfected with APP Swedish KM670/671NL double mutation. Inhibition of v-secretase, prior and/or in parallel to hyperoxia, suggested that the increase of lysosomal A beta resulted mainly from its autophagic uptake, but also from APP processing within autophagic vacuoles. The oxidative stress-mediated effects were prevented by macroautophagy inhibition using 3-methyladenine or ATG5 downregulation. Our results suggest that upregulation of macroautophagy and resulting lysosomal A beta accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide additional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration.
  •  
4.
  • Zheng, Lin, et al. (författare)
  • Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells
  • 2011
  • Ingår i: Autophagy. - : Landes Bioscience. - 1554-8627 .- 1554-8635. ; 7:12, s. 1528-1545
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing evidence suggests the toxicity of intracellular amyloid β-protein (Aβ) to neurons, as well as the involvement of oxidative stress in Alzheimer disease (AD). Here we show that normobaric hyperoxia (exposure of cells to 40% oxygen for five days, and consequent activation of macroautophagy and accumulation of Aβ within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as Aβ monomers and oligomers, (2) increased reactive oxygen species production, and (3) enhanced apoptosis. Oxidant-induced apoptosis positively correlated with cellular Aβ production, being the highest in cells that were stably transfected with APP Swedish KM670/671NL double mutation. Inhibition of γ-secretase, prior and/or in parallel to hyperoxia, suggested that the increase of lysosomal Aβ resulted mainly from its autophagic uptake, but also from APP processing within autophagic vacuoles. The oxidative stress-mediated effects were prevented by macroautophagy inhibition using 3-methyladenine or ATG5 downregulation. Our results suggest that upregulation of macroautophagy and resulting lysosomal Aβ accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide aditional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy