SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hallberg Josef 1976 ) ;pers:(Karvonen Niklas 1979)"

Search: WFRF:(Hallberg Josef 1976 ) > Karvonen Niklas 1979

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Karvonen, Niklas, 1979- (author)
  • Unobtrusive Activity Recognition in Resource-Constrained Environments
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis discusses activity recognition from a perspective of unobtrusiveness, where devices are worn or placed in the environment without being stigmatising or in the way. The research focuses on performing unobtrusive activity recognition when computational and sensing resources are scarce. This includes investigating unobtrusive ways to gather data, as well as adapting data modelling and classification to small, resource-constrained, devices.The work presents different aspects of data collection and data modelling when only using unobtrusive sensing. This is achieved by considering how different sensor placements affects prediction performance and how activity models can be created when using a single sensor, or when using a number of simple binary sensors, to perform movement analysis, recognise everyday activities, and perform stress detection. The work also investigates how classification can be performed on resource-constrained devices, resulting in a novel computation-efficient classifier and an efficient hand-made classification model. The work finally sets unobtrusive activity recognition into real-life contexts where it can be used for interventions to reduce stress, sedentary behaviour and symptoms of dementia.The results indicate that activities can be recognised unobtrusively and that classification can be performed even on resource-constrained devices. This allows for monitoring a user’s activities over extensive periods, which could be used for creating highly personal digital interventions and in-time advice that help users make positive behaviour changes. Such digital health interventions based on unobtrusive activity recognition for resource-constrained environments are important for addressing societal challenges of today, such as sedentary behaviour, stress, obesity, and chronic diseases. The final conclusion is that unobtrusive activity recognition is a cornerstone necessary for bringing many digital health interventions into a wider use.
  •  
2.
  • Synnes, Kåre, 1969-, et al. (author)
  • H2Al : The Human Health and Activity Laboratory
  • 2018
  • In: <em>Proceedings</em>, 2018, UCAmI 2018. - Basel Switzerland : MDPI.
  • Conference paper (peer-reviewed)abstract
    • The Human Health and Activity Laboratory (H2Al) is a new research facility at Luleå University of Technology implemented during 2018 as a smart home environment in an educational training apartment for nurses and therapists at the Luleå campus. This paper presents the design and implementation of the lab together with a discussion on potential impact. The aim is to identify and overcome economical, technical and social barriers to achieve an envisioned good and equal health and welfare within and from home environments. The lab is equipped with multiple sensor and actuator systems in the environment, worn by persons and based on digital information. The systems will allow for advanced capture, filtering, analysis and visualization of research data such as A/V, EEG, ECG, EMG, GSR, respiration and location while being able to detect falls, sleep apnea and other critical health and wellbeing issues. The resulting studies will be aimed towards supporting and equipping future home environments and care facilities, spanning from temporary care to primary care at hospitals, with technologies for activity and critical health and wellness issue detection. The work will be conducted at an International level and within a European context, based on a collaboration with other smart labs, such that experiments can be replicated at multiple sites. This paper presents some initial lessons learnt including design, setup and configuration for comparison of sensor placements and configurations as well as analytical methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view