SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Halldin C) ;hsvcat:2"

Sökning: WFRF:(Halldin C) > Teknik

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anders, Halldin, et al. (författare)
  • Improved osseointegration and interlocking capacity with dual acid treated implants: a rabbit study.
  • 2016
  • Ingår i: Clinical Oral Implants Research. - : Wiley. - 0905-7161 .- 1600-0501. ; 27, s. 22-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To investigate how osseointegration is affected by different nano- and microstructures. The hypothesis was that the surface structure created by dual acid treatment (AT-1), applied on a reduced topography, might achieve equivalent biomechanical performance as a rougher surface treated with hydrofluoric acid (HF). Materials and methods In a preclinical rabbit study, three groups (I, II, and III) comprised of test and control implants were inserted in 30 rabbits. The microstructures of the test implants were either produced by blasting with coarse (I) or fine (II) titanium particles or remained turned (III). All test implants were thereafter treated with AT-1 resulting in three different test surfaces. The microstructure of the control implants was produced by blasting with coarse titanium particles thereafter treated with HF. The surface topography was characterized by interferometry. Biomechanical (removal torque) and histomorphometric (bone–implant contact; bone area) performances were measured after 4 or 12 weeks of healing. Results Removal torque measurement demonstrated that test implants in group I had an enhanced biomechanical performance compared to that of the control despite similar surface roughness value (Sa). At 4 weeks of healing, group II test implants showed equivalent biomechanical performance to that of the control, despite a decreased Sa value. Group III test implants showed decreased biomechanical performance to that of the control. Conclusions: The results of the present study suggest that nano- and microstructure alteration by AT-1 on a blasted implant might enhance the initial biomechanical performance, while for longer healing time, the surface interlocking capacity seems to be more important.
  •  
2.
  •  
3.
  • Deck, C., et al. (författare)
  • Protection capability of bicycle helmets under oblique impact assessed with two separate brain FE models
  • 2017
  • Ingår i: Conference proceedings International Research Council on the Biomechanics of Injury, IRCOBI. - : International Research Council on the Biomechanics of Injury. ; , s. 190-200
  • Konferensbidrag (refereegranskat)abstract
    • The present study proposes a bicycle helmet evaluation under oblique impact based on a coupled experimental versus numerical test method using two separate brain FE models. For each of the 17 helmet types three oblique impacts have been conducted and the 6D headform acceleration curves have been considered as the initial conditions of the brain injury risk assessment based on the FE simulation. The study gives a new insight into helmet protection capability under oblique loading and shows that adequate protection is offered by most of the helmets when impacts leading to rotation around X and Y are concerned. However when impact leads to rotation around Z axis the protection is critical for nearly all helmets. The study considers two separate brain FE models for the assessment of brain injury risk and thus permits a comparative analysis of brain FE modeling. When impact induces rotation around X and Y axis the computed results are comparable. However when rotation around Z axis are concerned significant differences are observed which demonstrate that further efforts are needed in the domain of model based brain injury criteria harmonization. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy