SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Halldin Christer) ;lar1:(lu)"

Sökning: WFRF:(Halldin Christer) > Lunds universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paul-Visse, Gesine, et al. (författare)
  • Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson's disease patients
  • 2015
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:3, s. 1339-1346
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND. Recombinant human PDGF-BB (rhPDGF-BB) reduces Parkinsonian symptoms and increases dopamine transporter (DAT) binding in several animal models of Parkinson's disease (PD). Effects of rhPDGF-BB are the result of proliferation of ventricular wall progenitor cells and reversed by blocking mitosis. Based on these restorative effects, we assessed the safety and tolerability of intracerebroventricular (i.c.v.) rhPDGF-BB administration in individuals with PD. METHODS. We conducted a double-blind, randomized, placebo-controlled phase I/IIa study at two clinical centers in Sweden. Twelve patients with moderate PD received rhPDGF-BB via an implanted drug infusion pump and an investigational i.c.v. catheter. Patients were assigned to a dose cohort (0.2, 1.5, or 5 mu g rhPDGF-BB per day) and then randomized to active treatment or placebo (3:1) for a 12-day treatment period. The primary objective was to assess safety and tolerability of i.c.v.-delivered rhPDGF-BB. Secondary outcome assessments included several clinical rating scales and changes in DAT binding. The follow-up period was 85 days. RESULTS. All patients completed the study. There were no unresolved adverse events. Serious adverse events occurred in three patients; however, these were unrelated to rhPDGF-BB administration. Secondary outcome parameters did not show dose-dependent changes in clinical rating scales, but there was a positive effect on DAT binding in the right putamen. CONCLUSION. At all doses tested, i.c.v. administration of rhPDGF-BB was well tolerated. Results support further clinical development of rhPDGF-BB for patients with PD.
  •  
2.
  • Plavén-Sigray, Pontus, et al. (författare)
  • Thalamic dopamine D2-receptor availability in schizophrenia : a study on antipsychotic-naive patients with first-episode psychosis and a meta-analysis.
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 27:2, s. 1233-1240
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacological and genetic evidence support a role for an involvement of the dopamine D2-receptor (D2-R) in the pathophysiology of schizophrenia. Previous molecular imaging studies have suggested lower levels of D2-R in thalamus, but results are inconclusive. The objective of the present study was to use improved methodology to compare D2-R density in whole thalamus and thalamic subregions between first-episode psychosis patients and healthy controls. Differences in thalamocortical connectivity was explored based on the D2-R results. 19 antipsychotic-naive first-episode psychosis patients and 19 age- and sex-matched healthy controls were examined using high-resolution Positron Emission Tomography (PET) and the high-affinity D2-R radioligand [11C]FLB457. The main outcome was D2-R binding potential (BPND) in thalamus, and it was predicted that patients would have lower binding. Diffusion tensor imaging (DTI) was performed in a subgroup of 11 patients and 15 controls. D2-R binding in whole thalamus was lower in patients compared with controls (Cohen's dz = -0.479, p = 0.026, Bayes Factor (BF) > 4). Among subregions, lower BPND was observed in the ROI representing thalamic connectivity to the frontal cortex (Cohen's dz = -0.527, p = 0.017, BF > 6). A meta-analysis, including the sample of this study, confirmed significantly lower thalamic D2-R availability in patients. Exploratory analyses suggested that patients had lower fractional anisotropy values compared with controls (Cohen's d = -0.692, p = 0.036) in the inferior thalamic radiation. The findings support the hypothesis of a dysregulation of thalamic dopaminergic neurotransmission in schizophrenia, and it is hypothesized that this could underlie a disturbance of thalamocortical connectivity.
  •  
3.
  • Smith, Ruben, et al. (författare)
  • The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A positron emission tomography (PET) tracer detecting α-synuclein pathology will improve the diagnosis, and ultimately the treatment of α-synuclein-related diseases. Here we show that the PET ligand, [18F]ACI-12589, displays good in vitro affinity and specificity for pathological α-synuclein in tissues from patients with different α-synuclein-related disorders including Parkinson’s disease (PD) and Multiple-System Atrophy (MSA) using autoradiography and radiobinding techniques. In the initial clinical evaluation we include 23 participants with α-synuclein related disorders, 11 with other neurodegenerative disorders and eight controls. In vivo [18F]ACI-12589 demonstrates clear binding in the cerebellar white matter and middle cerebellar peduncles of MSA patients, regions known to be highly affected by α-synuclein pathology, but shows limited binding in PD. The binding statistically separates MSA patients from healthy controls and subjects with other neurodegenerative disorders, including other synucleinopathies. Our results indicate that α-synuclein pathology in MSA can be identified using [18F]ACI-12589 PET imaging, potentially improving the diagnostic work-up of MSA and allowing for detection of drug target engagement in vivo of novel α-synuclein targeting therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy