SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haller Toomas) "

Sökning: WFRF:(Haller Toomas)

  • Resultat 1-10 av 20
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wain, Louise V., et al. (författare)
  • Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure
  • 2011
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 43:10, s. 122-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans(1-3). We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 x 10(-8) to P = 2.3 x 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.
  •  
3.
  • Graff, Mariaelisa, et al. (författare)
  • Genome-wide physical activity interactions in adiposity A meta-analysis of 200,452 adults.
  • 2017
  • Ingår i: PLoS Genetics. - PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.</p>
  •  
4.
  • Graff, Mariaelisa, et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genet. - 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
5.
  • Graff, Mariaelisa, et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genetics. - Public library service. - 1553-7390 .- 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.</p>
  •  
6.
  • Huffman, Jennifer E., et al. (författare)
  • Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans
  • 2015
  • Ingår i: PLoS ONE. - 1932-6203 .- 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, P-inter= 2.6 x 10(-8)). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDAR-ADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10(-8)), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10(-8)), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10(-4)). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.</p>
  •  
7.
  • Koettgen, Anna, et al. (författare)
  • Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
  • 2013
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 45:2, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from &gt;140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SEMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.</p>
  •  
8.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
9.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-206
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (<em>P</em> &lt; 5 × 10<sup>−8</sup>), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for &gt;20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p>
  •  
10.
  • Locke, Adam E., et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-U401
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in upto 339,224 individuals. This analysis identifies 97 BMI-associated loci (P &lt; 5 x 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for similar to 2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for &gt;20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous systemin obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
  • [1]2Nästa
Åtkomst
fritt online (4)
Typ av publikation
tidskriftsartikel (20)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt (1)
Författare/redaktör
Haller, Toomas (20)
Gudnason, Vilmundur (19)
Gieger, Christian (19)
Hayward, Caroline (19)
Campbell, Harry (19)
Harris, Tamara B. (18)
visa fler...
Nolte, Ilja M (18)
Zhang, Weihua (18)
Teumer, Alexander (17)
Hofman, Albert (17)
Mangino, Massimo (17)
Esko, Tonu (17)
Kooner, Jaspal S. (17)
Amin, Najaf (16)
Montgomery, Grant W. (16)
Rudan, Igor (16)
Kleber, Marcus E. (16)
Bandinelli, Stefania (16)
Demirkan, Ayse, (15)
Rose, Lynda M (15)
Luan, Jian'an (15)
Feitosa, Mary F. (15)
Kutalik, Zoltan (15)
Tanaka, Toshiko (15)
Mahajan, Anubha (15)
Yengo, Loïc, (14)
Chasman, Daniel I., (14)
Salomaa, Veikko (14)
Jackson, Anne U. (14)
Sanna, Serena (14)
Stringham, Heather M ... (14)
Bergman, Richard N. (14)
Collins, Francis S. (14)
Raitakari, Olli T (13)
Hartman, Catharina A ... (13)
Kuusisto, Johanna, (13)
Langenberg, Claudia (13)
Scott, Robert A (13)
Heard-Costa, Nancy L ... (13)
Winkler, Thomas W. (13)
Workalemahu, Tsegase ... (13)
Prokopenko, Inga (13)
Hicks, Andrew A. (13)
Wright, Alan F. (13)
Wilson, James F. (13)
Metspalu, Andres (13)
Kumari, Meena (13)
Goel, Anuj (13)
Justice, Anne E. (13)
Oldehinkel, Albertin ... (13)
visa färre...
Lärosäte
Uppsala universitet (10)
Karolinska Institutet (6)
Göteborgs universitet (5)
Lunds universitet (5)
Umeå universitet (4)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy