SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hallquist Mattias) ;pers:(Tillmann R.)"

Sökning: WFRF:(Hallquist Mattias) > Tillmann R.

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Emanuelsson, Eva U., et al. (författare)
  • Parameterization of Thermal Properties of Aging Secondary Organic Aerosol Produced by Photo-Oxidation of Selected Terpene Mixtures
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:11, s. 6168-6176
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine T-VFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. T-VFR0.5 increased by 0.3 +/- 0.1% (ca. 1 K), while the steepness increased by 0.9 +/- 0.3% per hour of 1 x 10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.
  •  
2.
  •  
3.
  • Brownwood, B., et al. (författare)
  • Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO3-Initiated Oxidation of Isoprene under Varied Chemical Regimes
  • 2021
  • Ingår i: Acs Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 5:4, s. 785-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO(3)Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 +/- 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with similar to 50 mu g m(-3) inorganic seed aerosol and 2-5 mu g m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically similar to 100 ppb O-3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K-p similar to 10(-3) m(3) mu g(-1)), indicating an average volatility corresponding to a C-5 hydroxy hydroperoxy nitrate.
  •  
4.
  • Carlsson, P. T. M., et al. (författare)
  • Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation
  • 2023
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:5, s. 3147-3180
  • Tidskriftsartikel (refereegranskat)abstract
    • The gas-phase reaction of isoprene with the nitrate radical (NO3) was investigated in experiments in the outdoor SAPHIR chamber under atmospherically relevant conditions specifically with respect to the chemical lifetime and fate of nitrato-organic peroxy radicals (RO2). Observations of organic products were compared to concentrations expected from different chemical mechanisms: (1) the Master Chemical Mechanism, which simplifies the NO3 isoprene chemistry by only considering one RO2 isomer; (2) the chemical mechanism derived from experiments in the Caltech chamber, which considers different RO2 isomers; and (3) the FZJ-NO3 isoprene mechanism derived from quantum chemical calculations, which in addition to the Caltech mechanism includes equilibrium reactions of RO(2 )isomers, unimolecular reactions of nitrate RO(2 )radicals and epoxidation reactions of nitrate alkoxy radicals. Measurements using mass spectrometer instruments give evidence that the new reactions pathways predicted by quantum chemical calculations play a role in the NO3 oxidation of isoprene. Hydroperoxy aldehyde (HPALD) species, which are specific to unimolecular reactions of nitrate RO2, were detected even in the presence of an OH scavenger, excluding the possibility that concurrent oxidation by hydroxyl radicals (OH) is responsible for their formation. In addition, ion signals at masses that can be attributed to epoxy compounds, which are specific to the epoxidation reaction of nitrate alkoxy radicals, were detected. Measurements of methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations confirm that the decomposition of nitrate alkoxy radicals implemented in the Caltech mechanism cannot compete with the ring-closure reactions predicted by quantum chemical calculations. The validity of the FZJ-NO3 isoprene mechanism is further supported by a good agreement between measured and simulated hydroxyl radical (OH) reactivity. Nevertheless, the FZJ-NO3 isoprene mechanism needs further investigations with respect to the absolute importance of unimolecular reactions of nitrate RO2 and epoxidation reactions of nitrate alkoxy radicals. Absolute concentrations of specific organic nitrates such as nitrate hydroperoxides would be required to experimentally determine product yields and branching ratios of reactions but could not be measured in the chamber experiments due to the lack of calibration standards for these compounds. The temporal evolution of mass traces attributed to product species such as nitrate hydroperoxides, nitrate carbonyl and nitrate alcohols as well as hydroperoxy aldehydes observed by the mass spectrometer instruments demonstrates that further oxidation by the nitrate radical and ozone at atmospheric concentrations is small on the timescale of one night (12 h) for typical oxidant concentrations. However, oxidation by hydroxyl radicals present at night and potentially also produced from the decomposition of nitrate alkoxy radicals can contribute to their nocturnal chemical loss.
  •  
5.
  • Donahue, N. M., et al. (författare)
  • Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:34, s. 13503-13508
  • Tidskriftsartikel (refereegranskat)abstract
    • The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.
  •  
6.
  • Emanuelsson, Eva U., et al. (författare)
  • Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:8, s. 20311-20350
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. Several experiments with exclusively anthro- 5 pogenic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μgm−3. The yields (0.5–9 %) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The 10 reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Further 15 more, the OH measurements in combination with the derived yields for anthropogenic SOA enabled application of a simplified model to calculate the chemical turnover of the anthropogenic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (8 %) up to significant fraction (>50 %) providing a suitable range to study the effect of aerosol 20 composition on the aerosol volatility (volume fraction remaining at 343 K: 0.86–0.94). The anthropogenic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of anthropogenic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. A strong positive correlation was found between 25 changes in volatility and O/C with the exception during dark hours where the SOA volatility decreased while O/C did not change significantly. This change in volatility under dark conditions is likely due to chemical or morphological changes not affecting O/C.
  •  
7.
  • Emanuelsson, Eva U., et al. (författare)
  • Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
  • 2013
  • Ingår i: Atmos. Chem. Phys.. - : Copernicus Publications. - 1680-7324. ; 13:5, s. 2837-2855
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m−3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86–0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. The SOA yields, O/C, and f44 (the mass fraction of CO2+ ions in the mass spectra which can be considered as a measure of carboxylic groups) in the mixed photo-chemical experiments could be described as linear combinations of the corresponding properties of the pure systems. For VFR there was in addition an enhancement effect, making the mixed aerosol significantly less volatile than what could be predicted from the pure systems. A strong positive correlation was found between changes in volatility and O/C with the exception during dark hours where the SOA volatility decreased while O/C did not change significantly. Thus, this change in volatility under dark conditions as well as the anthropogenic enhancement is due to chemical or morphological changes not affecting O/C.
  •  
8.
  • Guo, Y. D., et al. (författare)
  • Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:17, s. 11323-11346
  • Tidskriftsartikel (refereegranskat)abstract
    • Nighttime NO3-initiated oxidation of biogenic volatile organic compounds (BVOCs) such as monoterpenes is important for the atmospheric formation and growth of secondary organic aerosol (SOA), which has significant impact on climate, air quality, and human health. In such SOA formation and growth, highly oxygenated organic molecules (HOM) may be crucial, but their formation pathways and role in aerosol formation have yet to be clarified. Among monoterpenes, limonene is of particular interest for its high emission globally and high SOA yield. In this work, HOM formation in the reaction of limonene with nitrate radical (NO3) was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). About 280 HOM products were identified, grouped into 19 monomer families, 11 dimer families, and 3 trimer families. Both closed-shell products and open-shell peroxy radicals (RO2 center dot) 2 were observed, and many of them have not been reported previously. Monomers and dimers accounted for 47% and 47% of HOM concentrations, respectively, with trimers making up the remaining 6 %. In the most abundant monomer families, C10H15-17NO6-14, carbonyl products outnumbered hydroxyl products, indicating the importance of RO2 center dot termination by unimolecular dissociation. Both RO2 center dot autoxidation and alkoxy-peroxy pathways were found to be important processes leading to HOM. Time-dependent concentration profiles of monomer products containing nitrogen showed mainly second-generation formation patterns. Dimers were likely formed via the accretion reaction of two monomer RO2 center dot , and HOM-trimers via the accretion reaction between monomer RO2 center dot and dimer RO2 center dot. Trimers are suggested to play an important role in new particle formation (NPF) observed in our experiment. A HOM yield of 1.5%(+1.7%)(-0.7%) was estimated considering only first-generation products. SOA mass growth could be reasonably explained by HOM condensation on particles assuming irreversible uptake of ultra-low volatility organic compounds (ULVOCs), extremely low volatility organic compounds (ELVOCs), and low volatility organic compounds (LVOCs). This work provides evidence for the important role of HOM formed via the limonene +NO3 reaction in NPF and growth of SOA particles.
  •  
9.
  • Saathoff, H., et al. (författare)
  • Temperature dependence of yields of secondary organic aerosols from the ozonolysis of a-pinene and limonene
  • 2008
  • Ingår i: Atmos. Chem. Phys. Discuss.. ; 8, s. 15595-15664
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Secondary organic aerosol (SOA) formation has been investigated as a function of temperature and humidity for the ozone-initiated reaction of the two monoterpenes a-pinene (243–313 K) and limonene (253–313 K) using the 84.5 m3 aerosol chamber AIDA. This paper gives an overview of the measurements done and presents parameters specifically useful for aerosol yield calculations. The ozonolysis reaction, selected oxidation products and subsequent aerosol formation were followed using several analytical techniques for both gas and condensed phase characterisation. The effective densities of the SOA were determined by comparing mass and volume size distributions to (1.25±0.10) g cm-3 for a-pinene and (1.3±0.2) g cm-3 for limonene. The detailed aerosol dynamics code COSIMA-SOA proved to be essential for a comprehensive evaluation of the experimental results and for providing parameterisations directly applicable within atmospheric models. The COSIMA-assisted analysis succeeded to reproduce the observed time evolutions of SOA total mass, number and size distributions by adjusting the following properties of two oxidation product proxies: individual yield parameters (ai), partitioning coefficients (Ki), vapour pressures (pi) and effective accommodation coefficients (?i). For these properties temperature dependences were derived and parameterised. Vapour pressures and partitioning coefficients followed classical Clausius-Clapeyron temperature dependences. From this relationship enthalpies of vaporisation were derived for the two more and less volatile product proxies of a-pinene: (59±8) kJ mol-1 and (24±9) kJ mol-1, and limonene: (55±14) kJ mol-1 and (25±12) kJ mol-1. The more volatile proxy components had a notably low enthalpy of vaporisation while the less volatile proxy components gave enthalpies of vaporisation comparable with those of typical products from a-pinene oxidation, e.g. pinonaldehyde and pinonic acid.
  •  
10.
  • Saathoff, H., et al. (författare)
  • Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene
  • 2009
  • Ingår i: Atmos. Chem. Phys.. ; 9, s. 1551-1577
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation has been investigated as a function of temperature and humidity for the ozone-initiated reaction of the two monoterpenes α-pinene (243–313 K) and limonene (253–313 K) using the 84.5 m3 aerosol chamber AIDA. This paper gives an overview of the measurements done and presents parameters specifically useful for aerosol yield calculations. The ozonolysis reaction, selected oxidation products and subsequent aerosol formation were followed using several analytical techniques for both gas and condensed phase characterisation. The effective densities of the SOA were determined by comparing mass and volume size distributions to (1.25±0.10) g cm−3 for α-pinene and (1.3±0.2) g cm−3 for limonene. The detailed aerosol dynamics code COSIMA-SOA proved to be essential for a comprehensive evaluation of the experimental results and for providing parameterisations directly applicable within atmospheric models. The COSIMA-assisted analysis succeeded to reproduce the observed time evolutions of SOA total mass, number and size distributions by adjusting the following properties of two oxidation product proxies: individual yield parameters (αi), partitioning coefficients (Ki), vapour pressures (pi) and effective accommodation coefficients (γi). For these properties temperature dependences were derived and parameterised. Vapour pressures and partitioning coefficients followed classical Clausius – Clapeyron temperature dependences. From this relationship enthalpies of vaporisation were derived for the two more and less volatile product proxies of α-pinene: (59±8) kJ mol−1 and (24±9) kJ mol−1, and limonene: (55±14) kJ mol−1 and (25±12) kJ mol−1. The more volatile proxy components had a notably low enthalpy of vaporisation while the less volatile proxy components gave enthalpies of vaporisation comparable with those of typical products from α-pinene oxidation, e.g. pinonaldehyde and pinonic acid.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy