SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammarström Per) ;pers:(Sörgjerd Karin 1977)"

Sökning: WFRF:(Hammarström Per) > Sörgjerd Karin 1977

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lindgren, Mikael, et al. (författare)
  • Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy
  • 2005
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 88:6, s. 4200-4212
  • Tidskriftsartikel (refereegranskat)abstract
    • Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generation of prefibrillar aggregates of TTR, which provides important insight into TTR misfolding. Prefibrillar amyloidogenic oligomers and protofibrils of misfolded TTR were generated in vitro through induction of the molten globule type A-state from acid unfolded TTR through the addition of NaCl. The aggregation process produced fairly monodisperse oligomers (300–500 kD) within 2 h that matured after 20 h into larger spherical clusters (30–50 nm in diameter) and protofibrils as shown by transmission electron microscopy. Further maturation of the aggregates showed shrinkage of the spheres as the fibrils grew in length, suggesting a conformational change of the spheres into more rigid structures. The structural and physicochemical characteristics of the aggregates were investigated using fluorescence, circular dichroism, chemical cross-linking, and transmission electron microscopy. The fluorescent dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS), 4-(dicyanovinyl)-julolidine (DCVJ), and thioflavin T (ThT) were employed in both static and kinetic assays to characterize these oligomeric and protofibrillar states using both steady-state and time-resolved fluorescence techniques. DCVJ, a molecular rotor, was employed for the first time for studies of an amyloidogenic process and is shown useful for detection of the early steps of the oligomerization process. DCVJ bound to the early prefibrillar oligomers (300–500 kD) with an apparent dissociation constant of 1.6 mM, which was slightly better than for ThT (6.8 mM). Time-resolved fluorescence anisotropy decay of ANS was shown to be a useful tool for giving further structural and kinetic information of the oligomeric aggregates. ThT dramatically increases its fluorescence quantum yield when bound to amyloid fibrils; however, the mechanism behind this property is unknown. Data from this work suggest that unbound ThT is also intrinsically quenched and functions similarly to a molecular rotor, which in combination with its environmental dependence provides a blue shift to the characteristic 482nm wavelength when bound to amyloid fibrils.
  •  
3.
  • Mishra, Rajesh, 1973-, et al. (författare)
  • Lysozyme Amyloidogenesis Is Accelerated by Specific Nicking and Fragmentation but Decelerated by Intact Protein Binding and Conversion
  • 2007
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 366:3, s. 1029-1044
  • Tidskriftsartikel (refereegranskat)abstract
    • We have revisited the well-studied heat and acidic amyloid fibril formation pathway (pH 1.6, 65 °C) of hen egg-white lysozyme (HEWL) to map the barriers of the misfolding and amyloidogenesis pathways. A comprehensive kinetic mechanism is presented where all steps involving protein hydrolysis, fragmentation, assembly and conversion into amyloid fibrils are accounted for. Amyloid fibril formation of lysozyme has multiple kinetic barriers. First, HEWL unfolds within minutes, followed by irreversible steps of partial acid hydrolysis affording a large amount of nicked HEWL, the 49-101 amyloidogenic fragment and a variety of other species over 5-40 h. Fragmentation forming the 49-101 fragment is a requirement for efficient amyloid fibril formation, indicating that it forms the rate-determining nucleus. Nicked full-length HEWL is recruited efficiently into amyloid fibrils in the fibril growth phase or using mature fibrils as seeds, which abolished the lag phase completely. Mature amyloid fibrils of HEWL are composed mainly of nicked HEWL in the early equilibrium phase but go through a "fibril shaving" process, affording fibrils composed of the 49-101 fragment and 53-101 fragment during more extensive maturation (incubation for longer than ten days). Seeding of the amyloid fibril formation process using sonicated mature amyloid fibrils accelerates the fibril formation process efficiently, however, addition of intact full-length lysozyme at the end of the lag phase slows the rate of amyloidogenesis. The intact full-length protein, in contrast to nicked lysozyme, slows fibril formation due to its slow conversion into the amyloid fold, probably due to inclusion of the non-amyloidogenic 1-48/102-129 portion of HEWL in the fibrils, which can function as a "molecular bumper" stalling further growth. © 2006 Elsevier Ltd. All rights reserved.
  •  
4.
  • Sörgjerd, Karin, 1977-, et al. (författare)
  • BiP can function as a molecular shepherd that alleviates oligomer toxicity and amass amyloid
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A wide range of diseases are linked to protein misfolding and aggregation inside and outside the cell. It is of utmost interest to understand how the molecular chaperone machinery of the endoplasmic reticulum (ER) handles the expression of highly amyloidogenic proteins. We explored the hypothesis that the ER located Hsp70 molecular chaperone BiP plays a crucial role in amyloid diseases and influence the misfolding process and disease progression. We used the transthyretin mutant TTR D18G associated with an unusual central nervous system amyloid disease as the model substrate because it represents the most destabilized and degraded TTR variant known. Over-expression of TTR D18G in concert with BiP showed that BiP selectively recognize the amyloidogenic mutant protein as compared to wild type in human cells and collects the mutant in stable intermediate size oligomers within the ER. Furthermore, whereas TTR D18G was found to be highly cytotoxic to neuroblastoma cells, TTR D18G preincubated with BiP was non-toxic indicating that BiP protects the cell from cytotoxicity. BiP was also found present in cerebellar amyloid deposits and co-localized with TTR in a TTR D18G patient suggesting that the complex can be found in the extracellular space. We promote a fundamental role of BiP in misfolding diseases and describe a molecular shepharding function of BiP in sequestrating amyloidogenic protein molecules in benign oligomeric states.
  •  
5.
  • Sörgjerd, Karin, 1977- (författare)
  • Molecular Aspects of Transthyretin Amyloid Disease
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis was made to get a deeper understanding of how chaperones interact with unstable, aggregation prone, misfolded proteins involved in human disease. Over the last two decades, there has been much focus on misfolding diseases within the fields of biochemistry and molecular biotechnology research. It has become obvious that proteins that misfold (as a consequence of a mutation or outer factors), are the cause of many diseases. Molecular chaperones are proteins that have been defined as agents that help other proteins to fold correctly and to prevent aggregation. Their role in the misfolding disease process has been the subject for this thesis.Transthyretin (TTR) is a protein found in human plasma and in cerebrospinal fluid. It works as a transport protein, transporting thyroxin and holo-retinol binding protein. The structure of TTR consists of four identical subunits connected through hydrogen bonds and hydrophobic interactions. Over 100 point mutations in the TTR gene are associated with amyloidosis often involving peripheral neurodegeneration (familial amyloidotic polyneuropathy (FAP)). Amyloidosis represents a group of diseases leading to extra cellular deposition of fibrillar protein known as amyloid. We used human SH-SY5Y neuroblastoma cells as a model for neurodegeneration. Various conformers of TTR were incubated with the cells for different amounts of time. The experiments showed that early prefibrillar oligomers of TTR induced apoptosis when neuroblastoma cells were exposed to these species whereas mature fibrils were not cytotoxic. We also found increased expression of the molecular chaperone BiP in cells challenged with TTR oligomers.Point mutations destabilize TTR and result in monomers that are unstable and prone to aggregate. TTR D18G is naturally occurring and the most destabilized TTR mutant found to date. It leads to central nervous system (CNS) amyloidosis. The CNS phenotype is rare for TTR amyloid disease. Most proteins associated with amyloid disease are secreted proteins and secreted proteins must pass the quality control check within the endoplasmic reticulum (ER). BiP is a Hsp70 molecular chaperone situated in the ER. BiP is one of the most important components of the quality control system in the cell. We have used TTR D18G as a model for understanding how an extremely aggregation prone protein is handled by BiP. We have shown that BiP can selectively capture TTR D18G during co-expression in both E. coli and during over expression in human 293T cells and collects the mutant in oligomeric states. We have also shown that degradation of TTR D18G in human 293T cells occurs slower in presence of BiP, that BiP is present in amyloid deposition in human brain and mitigates cytotoxicity of TTR D18G oligomers.
  •  
6.
  • Sörgjerd, Karin, 1977-, et al. (författare)
  • Prefibrillar Amyloid Aggregates and Cold Shocked Tetrameric Wild Type Transthyretin are Cytotoxic
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Recent studies suggest that soluble, oligomeric species, which are intermediates in the fibril formation process in amyloid disease, might be the key species in amyloid pathogenesis. Soluble oligomers of TTR were produced by kinetic sampling from a TTR fibrillation reaction (A-state TTR, pH 2, 100 mM NaCl). The reaction was terminated at different time points, and different states in the aggregation process were captured and analyzed to elucidate the oligomer properties followed by sampling for cytotoxicity using exposure towards human SH-SYY5 neuroblastoma cells. Employing ThT fluorescence, time-resolved fluorescence anisotropy of pyrenelabeled TTR, chemical cross-linking and electron microscopy we demonstrated that early formed oligomers from A-state TTR were soluble and comprised on the average 20-30 TTR monomers. Early oligomers were highly cytotoxic and induced apoptosis as indicated by the MTT assay and caspase-3 activation, whereas mature fibrils were non-toxic. We also indicate an activated unfolded protein response in cells exposed to oligomers as evidenced by an increased expression of the endoplasmic reticulum located molecular chaperone BiP. Following exposure, BiP appeared relocalized to the cytoplasm. Surprisingly, we also found that native tetrameric TTR purified and stored under cold conditions (4 °C) was highly cytotoxic. The effect could be partially restored by increasing the temperature of the protein. The molecular basis for this pathogenicity is rather unclear but likely stems from previously reported increased sensitivity towards dissociation and denaturation of TTR at low temperatures and opens the possibility that rearranged tetrameric TTR is cytotoxic towards neuroblastoma cells.
  •  
7.
  • Sörgjerd, Karin, 1977-, et al. (författare)
  • Retention of Misfolded Mutant Transthyretin by the Chaperone BiP/GRP78 Mitigates Amyloidogenesi
  • 2006
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 356:2, s. 469-482
  • Tidskriftsartikel (refereegranskat)abstract
    • Carriers of the D18G transthyretin (TTR) mutation display an unusual central nervous system (CNS) phenotype with late onset of disease. D18G TTR is monomeric and highly prone to misfold and aggregate even at physiological conditions. Extremely low levels of mutant protein circulate both in human serum and cerebrospinal fluid, indicating impaired secretion of D18G TTR. Recent data show efficient selective ER-associated degradation (ERAD) of D18G TTR. One essential component of the ER-assisted folding machinery is the molecular chaperone BiP. Co-expression of BiP and D18G TTR, or BiP and wild-type (wt) TTR, or mutants A25T TTR and L55P TTR in Escherichia coli showed that only D18G TTR was significantly captured by BiP. Negligible capture of wt TTR and L55P TTR was seen and a sixfold smaller amount of A25T TTR bound to BiP compared to D18G TTR. These data correlate very well with thermodynamic and kinetic stability of the TTR variants, indicating that folding efficiency is inversely correlated to BiP capture. The complexes between BiP and D18G TTR were stable and could be isolated through affinity chromatography. Analytical ultracentrifugation and size-exclusion chromatography revealed that D18G TTR and BiP formed a mixture of 1:1 complexes and large soluble oligomers. The stoichiometry of captured D18G TTR versus BiP increased with increasing size of the oligomers. This indicates that BiP either worked as a molecular shepherd collecting the aggregation-prone mutant into stable oligomers or that BiP could bind to oligomers formed from misfolded mutant protein. Sequence analysis of bound TTR peptides to BiP revealed a bound sequence corresponding to residues 88–103 of TTR, comprising β-strand F in the folded TTR monomer constituting part of the hydrogen bonding tetramer interface in native TTR. The F-strand has also been suggested as a possible elongation region of amyloid fibrils, implicating how substoichiomeric amounts of BiP could sequester prefibrillar amyloidogenic oligomers through binding to this part of TTR. BiP binding to D18G TTR was abolished by addition of ATP. The released D18G TTR completely misfolded into amyloid aggregates as shown by ThT fluorescence and Congo red binding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy