SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Han Jianwei) "

Sökning: WFRF:(Han Jianwei)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Tang, Yumin, et al. (författare)
  • Two Compatible Polymer Donors Enabling Ternary Organic Solar Cells with a Small Nonradiative Energy Loss and Broad Composition Tolerance
  • 2020
  • Ingår i: Solar RRL. - : Wiley-VCH Verlagsgesellschaft. - 2367-198X. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • High-performance nonfullerene ternary organic solar cells (OSCs) with two polymer donors are less frequently reported because of the limited numbers of efficient polymer donors with good compatibility. Herein, a wide-bandgap polymer P1 with a deep-lying highest occupied molecular orbital (HOMO) level is incorporated as the third component into the benchmark PM6:Y6 binary system to fabricate ternary OSCs. The introduction of P1 not only leads to extended absorption coverage and forms a cascade-like energy level alignment but also shows excellent compatibility with PM6, resulting in a favorable morphology in the ternary blend. More importantly, P1 possesses a deeper HOMO level (-5.6 eV) than most well-known donor polymers, which enables resulting ternary OSCs with an improved open-circuit voltage. As a result, the optimized ternary OSCs with 40 wt% P1 in donors achieve a power conversion efficiency (PCE) of 16.2% with a small nonradiative recombination loss of 0.23 eV, which is among the highest values of ternary OSCs based on two polymer donors. In addition, the ternary OSCs show a broad composition tolerance with a high PCE of over 14% throughout the whole blend ratios. These results provide an effective approach to fabricate efficient ternary OSCs by synergizing two wide-bandgap polymer donors.
  •  
3.
  • Chai, Gaoda, et al. (författare)
  • Deciphering the Role of Chalcogen-Containing Heterocycles in Nonfullerene Acceptors for Organic Solar Cells
  • 2020
  • Ingår i: ACS Energy Letters. - : AMER CHEMICAL SOC. - 2380-8195. ; 5:11, s. 3415-3425
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of organic solar cells has experienced paradigm-shifting changes in recent years because of the emergence of nonfullerene acceptors (NFAs). It is critically important to gain more insight into the structure-property relationship of the emerging A-DAD-A-type NFAs. In this Letter, a family of NFAs named BPF-4F, BPT-4F, and BPS-4F incorporating various chalcogen-containing heterocycles, i.e., furan, thiophene, and selenophene, respectively, was designed and synthesized. These NFAs exhibited dramatic differences in their photovoltaic performances with device efficiencies of 16.8% achieved by the thiophene-based cells, which was much higher than the furan-based ones (12.6%). In addition, the selenophene-based NFA showed a red-shifted absorption relative to the furan- and thiophene-based ones and obtained a decent efficiency of 16.3% owing to an improved J(SC). The reasons why these NFAs performed differently are systematically studied by comparing their optoelectronic properties and film morphology, which provides new understandings of the molecular design of high-performance NFAs.
  •  
4.
  • Fu, Huiting, et al. (författare)
  • High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 143:7, s. 2665-2670
  • Tidskriftsartikel (refereegranskat)abstract
    • Y Despite the significant progresses made in all-polymer solar cells (all-PSCs) recently, the relatively low short-circuit current density (J(sc)) and large energy loss are still quite difficult to overcome for further development. To address these challenges, we developed a new class of narrow-bandgap polymer acceptors incorporating a benzotriazole (BTz)-core fused-ring segment, named the PZT series. Compared to the commonly used benzothiadiazole (BT)-containing polymer PYT, the less electron-deficient BTz renders PZT derivatives with significantly red-shifted optical absorption and up-shifted energy levels, leading to simultaneously improved J(sc) and open-circuit voltage in the resultant all-PSCs. More importantly, a regioregular PZT (PZT-gamma) has been developed to achieve higher regiospecificity for avoiding the formation of isomers during polymerization. Benefiting from the more extended absorption, better backbone ordering, and more optimal blend morphology with donor component, PZT-gamma-based all-PSCs exhibit a record-high power conversion efficiency of 15.8% with a greatly enhanced J(sc) of 24.7 mA/cm(2) and a low energy loss of 0.51 eV.
  •  
5.
  • Liang, Lin, et al. (författare)
  • Non-Interpenetrated Single-Crystal Covalent Organic Frameworks
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:41, s. 17991-17995
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state(2)H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0x10(4) Hz at 203 K to 1.5x10(7) Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state.
  •  
6.
  • Majed, Ahmad, et al. (författare)
  • Transition Metal Carbo-Chalcogenide "TMCC": A New Family of 2D Materials
  • 2022
  • Ingår i: Advanced Materials. - Weinheim, Germany : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 34:26
  • Tidskriftsartikel (refereegranskat)abstract
    • A new family of 2D transition metal carbo-chalcogenides (TMCCs) is reported, which can be considered a combination of two well-known families, TM carbides (MXenes) and TM dichalcogenides (TMDCs), at the atomic level. Single sheets are successfully obtained from multilayered Nb2S2C and Ta2S2C using electrochemical lithiation followed by sonication in water. The parent multilayered TMCCs are synthesized using a simple, scalable solid-state synthesis followed by a topochemical reaction. A superconductivity transition is observed at 7.55 K for Nb2S2C. The delaminated Nb2S2C outperforms both multilayered Nb2S2C and delaminated NbS2 as an electrode material for Li-ion batteries. Ab initio calculations predict the elastic constant of TMCC to be over 50% higher than that of TMDC.
  •  
7.
  • Qi, Zhenyu, et al. (författare)
  • Blueshifting the Absorption of a Small -Molecule Donor and Using it as the Third Component to Achieve High-Efficiency Ternary Organic Solar Cells
  • 2022
  • Ingår i: Solar RRL. - : WILEY-V C H VERLAG GMBH. - 2367-198X. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Adding a small-molecule donor (SMD) to state-of-the-art nonfullerene organic solar cells (OSCs) is demonstrated as a useful strategy to construct ternary organic solar cells, as SMDs typically have high crystallinity and can tune charge transport properties of OSCs. However, the absorption of most SMDs overlaps with typical donor polymers (e.g., PM6), which is against the general guidelines of adopting materials with complementary absorption in ternary OSCs. Herein, the absorption of state-of-art SMDs (BTR-CI) by linking the beta position of the outer thiophene to the alpha position of the inner thiophene unit is intentionally blueshifted. The resulting molecule beta-S1 shows a maximum absorption peak at 505 nm in the film state, which exhibits wider bandgap and shows complementary absorption with the host system (PM6:Y6). The corresponding ternary OSCs with 20%wt beta-S1 show significantly enhanced efficiency from 16.2% to 17.1% due to the increased short-circuit current (J(sc)) and improved fill factor (FF). Herein, an effective strategy to design SMDs with both wider bandgaps and higher crystallinity for high-performance ternary OSCs is presented.
  •  
8.
  • Sun, Huiliang, et al. (författare)
  • A Narrow-Bandgap n-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar Cells
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • Narrow-bandgap polymer semiconductors are essential for advancing the development of organic solar cells. Here, a new narrow-bandgap polymer acceptor L14, featuring an acceptor-acceptor (A-A) type backbone, is synthesized by copolymerizing a dibrominated fused-ring electron acceptor (FREA) with distannylated bithiophene imide. Combining the advantages of both the FREA and the A-A polymer, L14 not only shows a narrow bandgap and high absorption coefficient, but also low-lying frontier molecular orbital (FMO) levels. Such FMO levels yield improved electron transfer character, but unexpectedly, without sacrificing open-circuit voltage (V-oc), which is attributed to a small nonradiative recombination loss (E-loss,E-nr) of 0.22 eV. Benefiting from the improved photocurrent along with the high fill factor andV(oc), an excellent efficiency of 14.3% is achieved, which is among the highest values for all-polymer solar cells (all-PSCs). The results demonstrate the superiority of narrow-bandgap A-A type polymers for improving all-PSC performance and pave a way toward developing high-performance polymer acceptors for all-PSCs.
  •  
9.
  • Yao, Huatong, et al. (författare)
  • All-Polymer Solar Cells with over 12% Efficiency and a Small Voltage Loss Enabled by a Polymer Acceptor Based on an Extended Fused Ring Core
  • 2020
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the field of all-polymer solar cells (all-PSCs) has seen rapid progress in device efficiencies during the past few years, there are limited choices of polymer acceptors that exhibit strong absorption in the near-IR region and achieve high open-circuit voltage (V-OC) at the same time. In this paper, an all-PSC device is demonstrated with a 12.06% efficiency based on a new polymer acceptor (named PT-IDTTIC) that exhibits strong absorption (maximum absorption coefficient: 2.41 x 10(5)cm(-1)) and a narrow optical bandgap (1.49 eV). Compared to previously reported polymer acceptors such as those based on the indacenodithiophene (IDT) core, the indacenodithienothiophene (IDTT) core has further extended fused ring, providing the polymer with extended absorption into the near-IR region and also increases the electron mobility of the polymer. By blending PT-IDTTIC with the donor polymer, PM6, a high-efficiency all-PSC is achieved with a small voltage loss of 0.52 V, without sacrificingJ(SC)and FF, which demonstrates the great potential of high-performance all-PSCs.
  •  
10.
  • Yu, Han, et al. (författare)
  • Fluorinated End Group Enables High-Performance All-Polymer Solar Cells with Near-Infrared Absorption and Enhanced Device Efficiency over 14%
  • 2021
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorination of end groups has been a great success in developing efficient small molecule acceptors. However, this strategy has not been applied to the development of polymer acceptors. Here, a dihalogenated end group modified by fluorine and bromine atoms simultaneously, namely IC-FBr, is first developed, then employed to construct a new polymer acceptor (named PYF-T) for all-polymer solar cells (all-PSCs). In comparison with its non-fluorinated counterpart (PY-T), PYF-T exhibits stronger and red-shifted absorption spectra, stronger molecular packing and higher electron mobility. Meanwhile, the fluorination on the end groups down-shifts the energy levels of PYF-T, which matches better with the donor polymer PM6, leading to efficient charge transfer and small voltage loss. As a result, an all-PSC based on PM6:PYF-T yields a higher power conversion efficiency (PCE) of 14.1% than that of PM6:PY-T (11.1%), which is among the highest values for all-PSCs reported to date. This work demonstrates the effectiveness of fluorination of end-groups in designing high-performance polymer acceptors, which paves the way toward developing more efficient and stable all-PSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy