SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansen B. F.) ;lar1:(nrm)"

Sökning: WFRF:(Hansen B. F.) > Naturhistoriska riksmuseet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Crous, P. W., et al. (författare)
  • Fusarium : more than a node or a foot-shaped basal cell
  • 2021
  • Ingår i: Studies in mycology. - : CENTRAALBUREAU SCHIMMELCULTURE. - 0166-0616 .- 1872-9797. ; :98
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
  •  
2.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
3.
  •  
4.
  • Polme, S., et al. (författare)
  • FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles
  • 2020
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 105:1, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.
  •  
5.
  • Dussex, Nicolas, et al. (författare)
  • Adaptation to the High-Arctic island environment despite long-term reduced genetic variation in Svalbard reindeer
  • 2023
  • Ingår i: iScience. - 2589-0042. ; 26:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Typically much smaller in number than their mainland counterparts, island populations are ideal systems to investigate genetic threats to small populations. The Svalbard reindeer (Rangifer tarandus platyrhynchus) is an endemic subspecies that colonized the Svalbard archipelago ca. 6,000–8,000 years ago and now shows numerous physiological and morphological adaptations to its arctic habitat. Here, we report a de-novo chromosome-level assembly for Svalbard reindeer and analyze 133 reindeer genomes spanning Svalbard and most of the species’ Holarctic range, to examine the genomic consequences of long-term isolation and small population size in this insular subspecies. Empirical data, demographic reconstructions, and forward simulations show that long-term isolation and high inbreeding levels may have facilitated the reduction of highly deleterious—and to a lesser extent, moderately deleterious—variation. Our study indicates that long-term reduced genetic diversity did not preclude local adaptation to the High Arctic, suggesting that even severely bottlenecked populations can retain evolutionary potential.
  •  
6.
  • Kleinhanns, I.C., et al. (författare)
  • Mode and timing of granitoid magmatism in the Västervik area (SE Sweden, Baltic Shield): Sr-Nd isotope and SIMS U-Pb age constraints.
  • 2015
  • Ingår i: Lithos. - : Elsevier BV. - 0024-4937 .- 1872-6143. ; 212-215, s. 321-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Observed geochemical and geophysical signatures in the southern Svecofennian domain (SD) and the Transscandinavian Igneous Belt (TIB) are explained through a model of tectonic cycling and episodic south-westward migration of a subduction zone system. The Västervik area is located between these two major tectonic domains and as such has received much attention. Granitoids of the Västervik area were recently re-grouped and classified within the context of this larger regional tectonic model, but a discrepancy between previous relative age estimations and the few available granitoid age determinations was noted. To address this issue, we have dated 13 granitoid samples using a high spatial resolution secondary ion mass spectrometry (SIMS) U–Pb technique. Our new results constrain the intrusion of the majority of granitoids to 1819–1795 Ma, thus placing them into the TIB-1 period. This age range also encompasses our new ages from the central granodiorite belt and the Örö-Hamnö pluton, demonstrating a previous overestimation of older granitoid generations in the Västervik area. Nonetheless, it is shown that Askersund/TIB-0 magmatism, represented by an augen gneiss sample dated to 1846 Ma, is unambiguously present as far south as the Västervik region. The anatectically generated leucogranites reveal TIB-1 ages and, as expected, older inherited zircon derived from the parental metasedimentary Västervik formation. By simple Sr–Nd isotope modeling it is further possible to deduce that most TIB-1 granitoids follow a simple (assimilation-) fractional crystallization petrogenetic trend. The youngest granitoid generation was produced through low-pressure fluid-absent crustal melting. In conclusion, granitoids of the Västervik area fit well into the proposed model for south-westward migration of a subduction zone system active in the Svecofennian domain and represent a new tectonic cycle. It is therefore possible to link the Svecofennian domain and the Transscandinavian Igneous Belt within a single evolutionary scenario explaining the observed granitoid petrology, geochemistry and geochronology. The study area is located at the edge of a particularly long-lived active continental margin that started to operate during the supercontinent Columbia at ca. 1.8 Ga and the presented model explains how this margin initiated at its eastern end.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy