SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Johan) ;lar1:(ri)"

Sökning: WFRF:(Hansson Johan) > RISE

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hansson, Julia, 1978, et al. (författare)
  • COSTS FOR REDUCING GHG EMISSIONS FROM ROAD AND AIR TRANSPORT WITH BIOFUELS AND ELECTROFUELS
  • 2023
  • Ingår i: European Biomass Conference and Exhibition Proceedings. - : ETA-Florence Renewable Energies. - 2282-5819. ; , s. 368-372
  • Konferensbidrag (refereegranskat)abstract
    • The potential future role of different biofuels, hydrogen, and so-called electrofuels/power-to-X (produced by electricity, water, and carbon dioxide, CO2) in different transportation sectors remains uncertain. The CO2 abatement cost, i.e., the cost for reducing a certain amount of greenhouse gas (GHG) emissions, is central from a societal and business perspective, the latter specifically in the case of an emission reduction obligation system (like in Germany and Sweden). The abatement cost of a specific fuel value chain depends on the production cost and the GHG reduction provided by the fuel. This paper analyses the CO2 abatement costs for different types of biofuels, biomass-based jet fuels and electrofuels for road transport and aviation, relevant for the Swedish and EU context. Since most assessed alternative fuel pathways achieve substantial GHG emission reduction compared to fossil fuels, the fuel production cost is, in general, more important to achieve a low CO2 abatement cost. The estimated CO2 abatement cost ranges from -0.37 to 4.03 SEK/kgCO2 equivalent. Fuels based on waste feedstock, have a relatively low CO2 abatement cost. Fuel pathways based on electricity or electricity and biomass have relatively high CO2 abatement cost. The CO2 abatement cost for lignocellulosic based pathways generally ends up in between.
  •  
2.
  •  
3.
  • Schulte, Maximilian, et al. (författare)
  • Climate change mitigation from increased paper recycling in Sweden : conserving forests or utilizing substitution?
  • 2024
  • Ingår i: Environmental Research Communications (ERC). - : IOP Publishing. - 2515-7620. ; 6:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change mitigation by increased paper recycling can alleviate the two-sided pressure on the Swedish forest sector: supplying growing demands for wood-based products and increasing the forest carbon sink. This study assesses two scenarios for making use of a reduced demand for primary pulp resulting from an increased paper recycling rate in Sweden, from the present 72% to 78%. A Conservation scenario uses the saved primary pulp to reduce pulplog harvests so as to increase the forest carbon sink concomitant with constant overall wood product supply. In contrast, a Substitution scenario uses the saved primary pulp to produce man-made cellulosic fibers (MMCF) from dissolving pulp replacing cotton fiber, implying increased overall wood product supply. Our results suggest that utilizing efficiency gains in paper recycling to reduce pulplog harvests is better from a climate change mitigation perspective than producing additional MMCF to substitute cotton fiber. This conclusion holds even when assuming the use of by-products from dissolving pulp making and an indirect increase in MMCF availability. Hence, unless joint improvements across the value chain materialize, the best climate change mitigation option from increased paper recycling in Sweden would seemingly be to reduce fellings rather than producing additional MMCF. 
  •  
4.
  • Schulte, Maximilian, et al. (författare)
  • Demand-driven climate change mitigation and trade-offs from wood product substitution : The case of Swedish multi-family housing construction
  • 2023
  • Ingår i: Journal of Cleaner Production. - : Elsevier Ltd. - 0959-6526 .- 1879-1786. ; 421
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-family housing construction (MFHC) with wood instead of concrete as frame material results in lower greenhouse gas emissions. Hence, substituting wood for concrete in MFHC in Sweden until 2030, and onwards to 2070, could be a promising climate change mitigation option. But to what extent, and how would it impact Sweden’s forests? Here we assess climate and biodiversity implications - in terms of the area of old forest - of a completely wood-based future MFHC in Sweden. The wood required is assumed to be exclusively sourced as additional fellings in Swedish forests, thus carbon leakage from wood imports as well as displacement of other wood uses can be disregarded. Different types of timber frame systems and the role of varying future dwelling sizes are considered. We find that the wood needed for a complete substitution of concrete would result in very minor increases in harvests. We further register slight net additional climate change mitigation, irrespective of the wood construction system. There is a small tradeoff between climate change mitigation and biodiversity, as the area of old forest reduces slightly. The largest climate benefit, and lowest impact on Swedish forests, is provided when using timber-light frame combined with reduced dwelling size. © 2023 The Authors
  •  
5.
  • Schulte, M., et al. (författare)
  • Nordic forest management towards climate change mitigation : time dynamic temperature change impacts of wood product systems including substitution effects
  • 2022
  • Ingår i: European Journal of Forest Research. - : Springer Science and Business Media Deutschland GmbH. - 1612-4669 .- 1612-4677. ; 141, s. 845-
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change mitigation trade-offs between increasing harvests to exploit substitution effects versus accumulating forest carbon sequestration complicate recommendations for climate beneficial forest management. Here, a time dynamic assessment ascertains climate change mitigation potential from different rotation forest management alternatives across three Swedish regions integrating the forest decision support system Heureka RegWise with a wood product model using life cycle assessment data. The objective is to increase understanding on the climate effects of varying the forest management. Across all regions, prolonging rotations by 20% leads on average to the largest additional net climate benefit until 2050 in both, saved emissions and temperature cooling, while decreasing harvests by 20% leads to the cumulatively largest net climate benefits past 2050. In contrast, increasing harvests or decreasing the rotation period accordingly provokes temporally alternating net emissions, or slight net emission, respectively, regardless of a changing market displacement factor. However, future forest calamities might compromise potential additional temperature cooling from forests, while substitution effects, despite probable prospective decreases, require additional thorough and time explicit assessments, to provide more robust policy consultation. © 2022, The Author(s).
  •  
6.
  • Söderholm, Patrik, 1968-, et al. (författare)
  • Technological development for sustainability : The role of network management in the innovation policy mix
  • 2019
  • Ingår i: Technological forecasting & social change. - : Elsevier. - 0040-1625 .- 1873-5509. ; 138, s. 309-323
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the key role of actor networks in progressing new sustainable technologies, there is a shortage of conceptual knowledge on how policy can help strengthen collaborative practices in such networks. The objective of this paper is to analyze the roles of such policies – so-called network management – throughout the entire technological development processes. The analysis draws on the public management and sustainability transitions literatures, and discusses how various network characteristics could affect the development of sustainable technologies, including how different categories of network management strategies could be deployed to influence actor collaborations. The paper's main contribution is an analytical framework that addresses the changing roles of network management at the interface between various phases of the technological development process, illustrated with the empirical case of advanced biorefinery technology development in Sweden. Furthermore, the analysis also addresses some challenges that policy makers are likely to encounter when pursuing network management strategies, and identifies a number of negative consequences of ignoring such instruments in the innovation policy mix. The latter include inefficient actor role-taking, the emergence of small, ineffective and competing actor networks in similar technological fields, and a shortage of interpretative knowledge.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy