SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Karl Johan) ;pers:(Blennow Kaj)"

Sökning: WFRF:(Hansson Karl Johan) > Blennow Kaj

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hansson, Karl, 1985, et al. (författare)
  • Use of the tau protein-to-peptide ratio in CSF to improve diagnostic classification of Alzheimer's disease
  • 2019
  • Ingår i: Clinical Mass Spectrometry. - : Elsevier BV. - 2376-9998. ; 14, s. 74-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) tau and phospho-tau are well established biomarkers of Alzheimer's disease. While these measures are conventionally referred to as 'total tau' (T-tau) and 'phospho-tau' (P-tau), several truncated and modified tau forms exist that may relay additional diagnostic information. We evaluated the diagnostic performance of an endogenous tau peptide in CSF, tau 175-190, in the phosphorylated and non-phosphorylated state. A liquid chromatography-mass spectrometry (LC-MS) method was established to measure these peptides in CSF and was used to analyze two independent clinical cohorts; the first cohort included patients with Alzheimer's disease (AD, n = 15), Parkinson's disease (PD, n = 15), progressive supranuclear palsy (PSP, n = 15), and healthy controls (n = 15), the second cohort included AD patients (n = 16), and healthy controls (n = 24). In both cohorts T-tau and P-tau concentrations were determined by immunoassay. While tau 175-190 and P-tau 175-190 did not differentiate the study groups, the separation of AD and controls by T-tau (area under the ROC Curve (AUC) = 95%) and P-tau (AUC = 92%) was improved when normalizing the ELISA measurements to the concentrations of the endogenous peptides: T-tau/tau 175-190 (AUC = 100%), P-tau/P-tau 175-190 (AUC = 95%). The separation between patients and controls by T-tau (AUC = 88%) and P-tau (AUC = 82%) was similarly improved in the second cohort by taking the ratios of T-tau/tau 175-190 (AUC = 97%) and P-tau/P-tau 175-190 (AUC = 98%). In conclusion, our results suggest that the performance of the AD biomarkers T-tau and P-tau could be improved by normalizing their measurements to the endogenous peptides tau 175-190 and P-tau 175-190, possibly because these endogenous tau peptides serve to normalize for physiological, and disease-independent, secretion of tau from neurons to the extracellular space and the CSF. Finally, the observations made here add to the general applicability of mass spectrometry as a tool for rapid identification and accurate quantification of biomarker candidates. (C) 2019 The Association for Mass Spectrometry: Applications to the Clinical Lab (MSACL). Published by Elsevier B.V. All rights reserved.
  •  
3.
  • Skillbäck, Tobias, et al. (författare)
  • A novel quantification-driven proteomic strategy identifies an endogenous peptide of pleiotrophin as a new biomarker of Alzheimer's disease
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new, quantification-driven proteomic approach to identifying biomarkers. In contrast to the identification-driven approach, limited in scope to peptides that are identified by database searching in the first step, all MS data are considered to select biomarker candidates. The endopeptidome of cerebrospinal fluid from 40 Alzheimer's disease (AD) patients, 40 subjects with mild cognitive impairment, and 40 controls with subjective cognitive decline was analyzed using multiplex isobaric labeling. Spectral clustering was used to match MS/MS spectra. The top biomarker candidate cluster (215% higher in AD compared to controls, area under ROC curve = 0.96) was identified as a fragment of pleiotrophin located near the protein's C-terminus. Analysis of another cohort (n = 60 over four clinical groups) verified that the biomarker was increased in AD patients while no change in controls, Parkinson's disease or progressive supranuclear palsy was observed. The identification of the novel biomarker pleiotrophin 151-166 demonstrates that our quantification-driven proteomic approach is a promising method for biomarker discovery, which may be universally applicable in clinical proteomics.
  •  
4.
  • Hansson, Karl, 1985, et al. (författare)
  • Expanding the cerebrospinal fluid endopeptidome
  • 2017
  • Ingår i: Proteomics. - : Wiley. - 1615-9853. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomarkers of neurodegenerative disorders are needed to assist in diagnosis, to monitor disease progression and therapeutic interventions, and to provide insight into disease mechanisms. One route to identify such biomarkers is by proteomic and peptidomic analysis of cerebrospinal fluid (CSF). In the current study, we performed an in-depth analysis of the human CSF endopeptidome to establish an inventory thatmay serve as a basis for future targeted biomarker studies. High-pH RP HPLC was employed for off-line sample prefractionation followed by low-pH nano-LC-MS analysis. Different software programs and scoring algorithms for peptide identification were employed and compared. A total of 18 031 endogenous peptides were identified at a FDR of 1%, increasing the number of known endogenous CSF peptides 10fold compared to previous studies. The peptides were derived from 2 053 proteins of which more than 60 have been linked to neurodegeneration. Notably, among the findings were six peptides derived from microtubule-associated protein tau, three of which span the diagnostically interesting threonine-181 (Tau-F isoform). Also, 213 peptides from amyloid precursor protein were identified, 58 of which were partially or completely within the sequence of amyloid beta 1-40/42, as well as 109 peptides from apolipoprotein E, spanning sequences that discriminate between the E2/E3/E4 isoforms of the protein.
  •  
5.
  • Hansson, Karl, 1985, et al. (författare)
  • Sample Preparation for Endopeptidomic Analysis in Human Cerebrospinal Fluid
  • 2017
  • Ingår i: Jove-Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; :130
  • Tidskriftsartikel (refereegranskat)abstract
    • This protocol describes a method developed to identify endogenous peptides in human cerebrospinal fluid (CSF). For this purpose, a previously developed method based on molecular weight cut-off (MWCO) filtration and mass spectrometric analysis was combined with an offline high-pH reverse phase HPLC pre-fractionation step. Secretion into CSF is the main pathway for removal of molecules shed by cells of the central nervous system. Thus, many processes in the central nervous system are reflected in the CSF, rendering it a valuable diagnostic fluid. CSF has a complex composition, containing proteins that span a concentration range of 8-9 orders of magnitude. Besides proteins, previous studies have also demonstrated the presence of a large number of endogenous peptides. While less extensively studied than proteins, these may also hold potential interest as biomarkers. Endogenous peptides were separated from the CSF protein content through MWCO filtration. By removing a majority of the protein content from the sample, it is possible to increase the sample volume studied and thereby also the total amount of the endogenous peptides. The complexity of the filtrated peptide mixture was addressed by including a reverse phase (RP) HPLC pre-fractionation step at alkaline pH prior to LC-MS analysis. The fractionation was combined with a simple concatenation scheme where 60 fractions were pooled into 12, analysis time consumption could thereby be reduced while still largely avoiding co-elution. Automated peptide identification was performed by using three different peptide/protein identification software programs and subsequently combining the results. The different programs were complementary rather than comparable with less than 15% of the identifications overlapped between the three.
  •  
6.
  • Russell, Claire L, et al. (författare)
  • Comprehensive Quantitative Profiling of Tau and Phosphorylated Tau Peptides in Cerebrospinal Fluid by Mass Spectrometry Provides New Biomarker Candidates.
  • 2017
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 55:1, s. 303-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Aberrant tau phosphorylation is a hallmark in Alzheimer's disease (AD), believed to promote formation of paired helical filaments, the main constituent of neurofibrillary tangles in the brain. While cerebrospinal fluid (CSF) levels of total tau and tau phosphorylated at threonine residue 181 (pThr181) are established core biomarkers for AD, the value of alternative phosphorylation sites, which may have more direct relevance to pathology, for early diagnosis is not yet known, largely due to their low levels in CSF and lack of standardized detection methods. To overcome sensitivity limitations for analysis of phosphorylated tau in CSF, we have applied an innovative mass spectrometry (MS) workflow, TMTcalibratortrademark, to enrich and enhance the detection of phosphoproteome components of AD brain tissue in CSF, and enable the quantitation of these analytes. We aimed to identify which tau species present in the AD brain are also detectable in CSF and which, if any, are differentially regulated with disease. Over 75% coverage of full-length (2N4R) tau was detected in the CSF with 47 phosphopeptides covering 31 different phosphorylation sites. Of these, 11 phosphopeptides were upregulated by at least 40%, along with an overall increase in tau levels in the CSF of AD patients relative to controls. Use of the TMTcalibratortrademark workflow dramatically improved our ability to detect tau-derived peptides that are directly related to human AD pathology. Further validation of regulated tau peptides as early biomarkers of AD is warranted and is currently being undertaken.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy