SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Markus) ;pers:(Stomrud Erik)"

Sökning: WFRF:(Hansson Markus) > Stomrud Erik

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmadi, Khazar, et al. (författare)
  • Fixel-Based Analysis Reveals Tau-Related White Matter Changes in Early Stages of Alzheimer’s Disease
  • 2024
  • Ingår i: Journal of Neuroscience. - 0270-6474. ; 44:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have shown white matter (WM) abnormalities in Alzheimer’s disease (AD) using diffusion tensor imaging (DTI). Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) and macroscopic changes in fiber cross-section (FC) in early stages of AD (N = 393, 212 females). FBA was also compared with DTI, free-water corrected (FW)-DTI and diffusion kurtosis imaging (DKI). We further investigated the correlation of FBA and tensor-derived metrics with AD pathology and cognition. FBA metrics were decreased in the entire cingulum bundle, uncinate fasciculus and anterior thalamic radiations in Aβ-positive patients with mild cognitive impairment compared to control groups. Metrics derived from DKI, and FW-DTI showed similar alterations whereas WM degeneration detected by DTI was more widespread. Tau-PET uptake in medial temporal regions was only correlated with reduced FC mainly in the parahippocampal cingulum in Aβ-positive individuals. This tau-related WM alteration was also associated with impaired memory. Despite the spatially extensive between-group differences in DTI-metrics, the link between WM and tau aggregation was only revealed using FBA metrics implying high sensitivity but low specificity of DTI-based measures in identifying subtle tau-related WM degeneration. No relationship was found between amyloid load and any diffusion-MRI measures. Our results indicate that early tau-related WM alterations in AD are due to macrostructural changes specifically captured by FBA metrics. Thus, future studies assessing the effects of AD pathology in WM tracts should consider using FBA metrics.
  •  
2.
  • Andersson, Emelie, et al. (författare)
  • Blood and cerebrospinal fluid neurofilament light differentially detect neurodegeneration in early Alzheimer's disease
  • 2020
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 95, s. 143-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) neurofilament light (NfL) concentration has reproducibly been shown to reflect neurodegeneration in brain disorders, including Alzheimer's disease (AD). NfL concentration in blood correlates with the corresponding CSF levels, but few studies have directly compared the reliability of these 2 markers in sporadic AD. Herein, we measured plasma and CSF concentrations of NfL in 478 cognitively unimpaired (CU) subjects, 227 patients with mild cognitive impairment, and 113 patients with AD dementia. We found that the concentration of NfL in CSF, but not in plasma, was increased in response to Aβ pathology in CU subjects. Both CSF and plasma NfL concentrations were increased in patients with mild cognitive impairment and AD dementia. Furthermore, only NfL in CSF was associated with reduced white matter microstructure in CU subjects. Finally, in a transgenic mouse model of AD, CSF NfL increased before serum NfL in response to the development of Aβ pathology. In conclusion, NfL in CSF may be a more reliable biomarker of neurodegeneration than NfL in blood in preclinical sporadic AD.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
4.
  • Hahn, Andreas, et al. (författare)
  • Association Between Earliest Amyloid Uptake and Functional Connectivity in Cognitively Unimpaired Elderly
  • 2019
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 29, s. 2173-2182
  • Tidskriftsartikel (refereegranskat)abstract
    • Alterations in cognitive performance have been noted in nondemented subjects with elevated accumulation of amyloid-β (Aβ) fibrils. However, it is not yet understood whether brain function is already influenced by Aβ deposition during the very earliest stages of the disease. We therefore investigated associations between [18F]Flutemetamol PET, resting-state functional connectivity, gray and white matter structure and cognitive performance in 133 cognitively normal elderly that exhibited normal global Aβ PET levels. [18F]Flutemetamol uptake in regions known to accumulate Aβ fibrils early in preclinical AD (i.e., mainly certain parts of the default-mode network) was positively associated with dynamic but not static functional connectivity (r = 0.77). Dynamic functional connectivity was further related to better cognitive performance (r = 0.21-0.72). No significant associations were found for Aβ uptake with gray matter volume or white matter diffusivity. The findings demonstrate that the earliest accumulation of Aβ fibrils is associated with increased functional connectivity, which occurs before any structural alterations. The enhanced functional connectivity may reflect a compensatory mechanism to maintain high cognitive performance in the presence of increasing amyloid accumulation during the earliest phases of AD.
  •  
5.
  • Mattsson, Niklas, et al. (författare)
  • Effects of APOE ε4 on neuroimaging, cerebrospinal fluid biomarkers, and cognition in prodromal Alzheimer's disease
  • 2018
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 71, s. 81-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein (APOE) ε4 is a major genetic risk factor for Alzheimer's disease (AD), but its importance for the clinical and biological heterogeneity in AD is unclear, particularly at the prodromal stage. We analyzed 151 prodromal AD patients (44 APOE ε4-negative and 107 APOE ε4-positive) from the BioFINDER study. We tested cognition, 18F-flutemetamol β-amyloid (Aβ) positron emission tomography, cerebrospinal fluid biomarkers of Aβ tau and neurodegeneration, and magnetic resonance imaging of white matter pathology and brain structure. Despite having similar cortical Aβ-load and baseline global cognition (mini mental state examination), APOE ε4-negative prodromal AD had more nonamnestic cognitive impairment, higher cerebrospinal fluid levels of Aβ-peptides and neuronal injury biomarkers, more white matter pathology, more cortical atrophy, and faster decline of mini mental state examination, compared to APOE ε4-positive prodromal AD. The absence of APOE ε4 is associated with an atypical phenotype of prodromal AD. This suggests that APOE ε4 may impact both the diagnostics of AD in early stages and potentially also effects of disease-modifying treatments.
  •  
6.
  • Oeckl, Patrick, et al. (författare)
  • Higher plasma β-synuclein indicates early synaptic degeneration in Alzheimer's disease
  • 2023
  • Ingår i: Alzheimer's and Dementia. - 1552-5260. ; 19:11, s. 5095-5102
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: β-Synuclein is an emerging synaptic blood biomarker for Alzheimer's disease (AD) but differences in β-synuclein levels in preclinical AD and its association with amyloid and tau pathology have not yet been studied. METHODS: We measured plasma β-synuclein levels in cognitively unimpaired individuals with positive Aβ-PET (i.e., preclinical AD, N = 48) or negative Aβ-PET (N = 61), Aβ-positive patients with mild cognitive impairment (MCI, N = 36), and Aβ-positive AD dementia (N = 85). Amyloid (A) and tau (T) pathology were assessed by [18F]flutemetamol and [18F]RO948 PET. RESULTS: Plasma β-synuclein levels were higher in preclinical AD and even higher in MCI and AD dementia. Stratification according to amyloid/tau pathology revealed higher β-synuclein in A+T− and A+T+ subjects compared with A−T−. Plasma β-synuclein levels were related to tau and Aβ pathology and associated with temporal cortical thinning and cognitive impairment. DISCUSSION: Our data indicate that plasma β-synuclein might track synaptic dysfunction, even during the preclinical stages of AD. HIGHLIGHTS: Plasma β-synuclein is already higher in preclinical AD. Plasma β-synuclein is higher in MCI and AD dementia than in preclinical AD. Aβ- and tau-PET SUVRs are associated with plasma β-synuclein levels. Plasma β-synuclein is already higher in tau-PET negative subjects. Plasma β-synuclein is related to temporal cortical atrophy and cognitive impairment.
  •  
7.
  • Santillo, Alexander F, et al. (författare)
  • Divergent functional connectivity changes associated with white matter hyperintensities
  • 2024
  • Ingår i: NeuroImage. - 1095-9572. ; 296
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment. White matter hyperintensities were automatically quantified using fluid-attenuated inversion recovery MRI and parameters from diffusion tensor imaging were estimated in major white matter fibre tracts. We calculated fMRI resting state-derived functional connectivity within and between predefined cortical regions structurally linked by the white matter tracts. How change in functional connectivity is affected by white matter lesions and related to cognition (in the form of executive function and processing speed) was explored. We examined the functional changes using a measure of sample entropy. As expected hyperintensities were associated with disrupted structural white matter integrity and were linked to reduced functional interregional lobar connectivity, which was related to decreased processing speed and executive function. Simultaneously, hyperintensities were also associated with increased intraregional functional connectivity, but only within the frontal lobe. This phenomenon was also associated with reduced cognitive performance. The increased connectivity was linked to increased entropy (reduced predictability and increased complexity) of the involved voxels' blood oxygenation level-dependent signal. Our findings expand our previous understanding of the impact of white matter hyperintensities on cognition by indicating novel mechanisms that may be important beyond this particular type of brain lesions.
  •  
8.
  • Spotorno, Nicola, et al. (författare)
  • Diffusion MRI tracks cortical microstructural changes during the early stages of Alzheimer’s disease
  • 2024
  • Ingår i: Brain. - 0006-8950. ; 147:3, s. 961-969
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-β (Aβ), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study. Participants were stratified following the Aβ/tau (AT) framework. The results revealed a widespread increase in mean diffusivity over time, including both temporal and parietal cortical regions, in Aβ-positive but still tau-negative individuals. These increases were steeper in Aβ-positive and tau-positive individuals and robust to the inclusion of cortical thickness in the model. A steeper increase in mean diffusivity was also associated with both changes over time in fluid markers reflecting astrocytic activity (i.e. plasma level of glial fibrillary acidic protein and CSF levels of YKL-40) and worsening of cognitive performance (all P < 0.01). By tracking cortical microstructural changes over time and possibly reflecting variations related to the astrocytic response, cortical mean diffusivity emerges as a promising marker for tracking treatments-induced microstructural changes in clinical trials.
  •  
9.
  • Spotorno, Nicola, et al. (författare)
  • Diffusion weighted magnetic resonance spectroscopy revealed neuronal specific microstructural alterations in Alzheimer’s disease
  • 2024
  • Ingår i: Brain Communications. - 2632-1297. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In Alzheimer’s disease, reconfiguration and deterioration of tissue microstructure occur before substantial degeneration become evident. We explored the diffusion properties of both water, a ubiquitous marker measured by diffusion MRI, and N-acetyl-aspartate, a neuronal metabolite probed by diffusion-weighted magnetic resonance spectroscopy, for investigating cortical microstructural changes downstream of Alzheimer’s disease pathology. To this aim, 50 participants from the Swedish BioFINDER-2 study were scanned on both 7 and 3 T MRI systems. We found that in cognitively impaired participants with evidence of both abnormal amyloid-beta (CSF amyloid-beta42/40) and tau accumulation (tau-PET), the N-acetyl-aspartate diffusion rate was significantly lower than in cognitively unimpaired participants (P < 0.05). This supports the hypothesis that intraneuronal tau accumulation hinders diffusion in the neuronal cytosol. Conversely, water diffusivity was higher in cognitively impaired participants (P < 0.001) and was positively associated with the concentration of myo-inositol, a preferentially astrocytic metabolite (P < 0.001), suggesting that water diffusion is sensitive to alterations in the extracellular space and in glia. In conclusion, measuring the diffusion properties of both water and N-acetyl-aspartate provides rich information on the cortical microstructure in Alzheimer’s disease, and can be used to develop new sensitive and specific markers to microstructural changes occurring during the disease course.
  •  
10.
  • Spotorno, Nicola, et al. (författare)
  • Measures of cortical microstructure are linked to amyloid pathology in Alzheimer's disease
  • 2023
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 146:4, s. 1602-1614
  • Tidskriftsartikel (refereegranskat)abstract
    • Markers of downstream events are a key component of clinical trials of disease-modifying therapies for Alzheimer's disease. Morphological metrics like cortical thickness are established measures of atrophy but are not sensitive enough to detect amyloid-beta (Aβ)- related changes that occur before overt atrophy become visible. We aimed to investigate to what extent diffusion MRI can provide sensitive markers of cortical microstructural changes and to test their associations with multiple aspects of the Alzheimer's disease pathological cascade, including both Aβ and tau accumulation, astrocytic activation and cognitive deficits. We applied the mean apparent diffusion propagator model to diffusion MRI data from 492 cognitively unimpaired elderly and patients with mild cognitive impairment from the Swedish BioFINDER-2 cohort. Participants were stratified in Aβ-negative/tau-negative, Aβ-positive/tau-negative and Aβ-positive/tau-positive based on Aβ- and tau-PET uptake. Cortical regional values of diffusion MRI metrics and cortical thickness were compared across groups. Associations between regional values of diffusion MRI metrics and both Aβ- and tau-PET uptake were also investigated along with the association with plasma level of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation (available in 292 participants). Mean squared displacement revealed widespread microstructural differences already between Aβ-negative/tau-negative and Aβ-positive/tau-negative participants with a spatial distribution that closely resembled the pattern of Aβ accumulation. In contrast, differences in cortical thickness were clearly more limited. Mean squared displacement was also correlated with both Aβ- and tau-PET uptake even independently from one another and from cortical thickness. Further, the same metric exhibited significantly stronger correlations with PET uptake than cortical thickness (P < 0.05). Mean squared displacement was also positively correlated with GFAP with a pattern that resembles Aβ accumulation, and GFAP partially mediated the association between Aβ accumulation and mean squared displacement. Further, impairments in executive functions were significantly more associated with mean squared displacement values extracted from a meta-region of interest encompassing regions accumulating Aβ early in the disease process, than with cortical thickness (P < 0.05). Similarly, impairments in memory functions were significantly more associated with mean squared displacement values extracted from a temporal meta-region of interest than with cortical thickness (P < 0.05). Metrics of cortical microstructural alteration derived from diffusion MRI are highly sensitive to multiple aspects of the Alzheimer's disease pathological cascade. Of particular interest is the link with both Aβ-PET and GFAP, suggesting diffusion MRI might reflects microstructural changes related to the astrocytic response to Aβ aggregation. Therefore, metrics of cortical diffusion might be important outcome measures in anti-Aβ treatments clinical trials for detecting drug-induced changes in cortical microstructure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy