SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Ola) ;pers:(Elgzyri Targ)"

Sökning: WFRF:(Hansson Ola) > Elgzyri Targ

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Parikh, Hemang M, et al. (författare)
  • Relationship between insulin sensitivity and gene expression in human skeletal muscle
  • 2021
  • Ingår i: BMC Endocrine Disorders. - : Springer Science and Business Media LLC. - 1472-6823. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Insulin resistance (IR) in skeletal muscle is a key feature of the pre-diabetic state, hypertension, dyslipidemia, cardiovascular diseases and also predicts type 2 diabetes. However, the underlying molecular mechanisms are still poorly understood.METHODS: To explore these mechanisms, we related global skeletal muscle gene expression profiling of 38 non-diabetic men to a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR).RESULTS: We identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity in human skeletal muscle, identifying autophagy-related genes as positively correlated with insulin sensitivity. Replication in an independent study of 9 non-diabetic men resulted in 10 overlapping genes that strongly correlated with insulin sensitivity, including SIRT2, involved in lipid metabolism, and FBXW5 that regulates mammalian target-of-rapamycin (mTOR) and autophagy. The expressions of SIRT2 and FBXW5 were also positively correlated with the expression of key genes promoting the phenotype of an insulin sensitive myocyte e.g. PPARGC1A.CONCLUSIONS: The muscle expression of 180 genes were correlated with insulin sensitivity. These data suggest that activation of genes involved in lipid metabolism, e.g. SIRT2, and genes regulating autophagy and mTOR signaling, e.g. FBXW5, are associated with increased insulin sensitivity in human skeletal muscle, reflecting a highly flexible nutrient sensing.
  •  
2.
  • Tornberg, Åsa, et al. (författare)
  • Relation between cycling exercise capacity, fiber-type composition, and lower extremity muscle strength and muscle endurance.
  • 2011
  • Ingår i: Journal of Strength and Conditioning Research. - 1533-4287. ; 25:1, s. 16-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Segerström, ÅB, Holmbäck, AM, Hansson, O, Elgzyri, T, Eriksson, K-F, Ringsberg, K, Groop, L, Wollmer, P, and Thorsson, O. Relation between cycling exercise capacity, fiber-type composition, and lower extremity muscle strength and muscle endurance. J Strength Cond Res 25(1): 16-22, 2011-The aim of the study was to determine the relation between peak oxygen uptake (&OV0312;o2peak), peak work rate (WRpeak), fiber-type composition, and lower extremity strength and endurance during a maximal incremental cycle test. Thirty-nine healthy sedentary men, aged 30-46, participated in the study. Subjects performed a maximal incremental cycle test and isokinetic knee extension (KE) and flexion (KF) strength and endurance tests at velocities of 60 and 180°·s. Muscle biopsies were taken from m. vastus lateralis and analyzed for fiber-type composition. A significant correlation existed between KE strength and &OV0312;o2peak and WRpeak. Also, KF endurance correlated significantly to &OV0312;o2peak and WRpeak. The KE endurance correlated significantly to WRpeak (rp = 0.32, p < 0.05) and almost significantly to &OV0312;o2peak (rp = 0.28, p = 0.06). Stepwise multiple regression analyses showed that KE strength, KF endurance, and the percentage of type I fibers could explain up to 40% of the variation in &OV0312;o2peak and WRpeak. The performance of sedentary subjects in a maximal incremental cycle test is highly affected by knee muscle strength and endurance. Fiber-type composition also contributes but to a smaller extent.
  •  
3.
  • Ahmad, Shafqat, et al. (författare)
  • Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia.
  • 2012
  • Ingår i: Diabetic Medicine: A journal of the British Diabetic Association. - : Wiley. - 1464-5491 .- 0742-3071. ; 29:10, s. 377-381
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Skeletal muscle is a major metabolic organ and plays important roles in glucose metabolism, insulin sensitivity and insulin action. Muscle telomere length reflects the myocyte's exposure to harmful environmental factors. Leukocyte telomere length is considered a marker of muscle telomere length and is used in epidemiologic studies to assess associations with ageing-related diseases where muscle physiology is important. However, the extent to which leucocyte and muscle telomere length are correlated is unknown, as are their relative correlations with glucose and insulin concentrations. The purpose of this study was to determine the extent of these relationships. Methods: Leucocyte and muscle telomere length were measured by quantitative real-time polymerase chain reaction in participants from the Malmö Exercise Intervention (n = 27) and the Prevalence, Prediction and Prevention of Diabetes-Botnia studies (n = 31). Participants in both studies were free from Type 2 diabetes. We assessed the association between leucocyte telomere length, muscle telomere length and metabolic traits using Spearmen correlations and multivariate linear regression. Bland-Altman analysis was used to assess agreement between leucocyte and muscle telomere length. Results: In age-, study-, diabetes family history- and sex-adjusted models, leucocyte and muscle telomere length were positively correlated (r = 0.39, 95% CI 0.15-0.59). Leucocyte telomere length was inversely associated with 2-h glucose concentrations (r = -0.58, 95% CI -1.0 to -0.16), but there was no correlation between muscle telomere length and 2-h glucose concentrations (r = 0.05, 95% CI -0.35 to 0.46) or between leucocyte or muscle telomere length with other metabolic traits. Conclusions: In summary, the current study supports the use of leucocyte telomere length as a proxy for muscle telomere length in epidemiological studies of Type 2 diabetes aetiology.
  •  
4.
  • Dekker Nitert, Marloes, et al. (författare)
  • Impact of an Exercise Intervention on DNA Methylation in Skeletal Muscle From First-Degree Relatives of Patients With Type 2 Diabetes.
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797.
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify epigenetic patterns, which may predispose to type 2 diabetes (T2D) due to a family history (FH) of the disease, we analyzed DNA methylation genome-wide in skeletal muscle from individuals with (FH(+)) or without (FH(-)) an FH of T2D. We found differential DNA methylation of genes in biological pathways including mitogen-activated protein kinase (MAPK), insulin, and calcium signaling (P ≤ 0.007) and of individual genes with known function in muscle, including MAPK1, MYO18B, HOXC6, and the AMP-activated protein kinase subunit PRKAB1 in skeletal muscle of FH(+) compared with FH(-) men. We further validated our findings from FH(+) men in monozygotic twin pairs discordant for T2D, and 40% of 65 analyzed genes exhibited differential DNA methylation in muscle of both FH(+) men and diabetic twins. We further examined if a 6-month exercise intervention modifies the genome-wide DNA methylation pattern in skeletal muscle of the FH(+) and FH(-) individuals. DNA methylation of genes in retinol metabolism and calcium signaling pathways (P < 3 × 10(-6)) and with known functions in muscle and T2D including MEF2A, RUNX1, NDUFC2, and THADA decreased after exercise. Methylation of these human promoter regions suppressed reporter gene expression in vitro. In addition, both expression and methylation of several genes, i.e., ADIPOR1, BDKRB2, and TRIB1, changed after exercise. These findings provide new insights into how genetic background and environment can alter the human epigenome.
  •  
5.
  •  
6.
  • Ekman, Carl, et al. (författare)
  • Less pronounced response to exercise in healthy relatives to type 2 diabetic subjects compared with controls
  • 2015
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 119:9, s. 953-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Healthy first-degree relatives with heredity of type 2 diabetes (FH+) are known to have metabolic inflexibility compared with subjects without heredity for diabetes (FH-). In this study, we aimed to test the hypothesis that FH+ individuals have an impaired response to exercise compared with FH-. Sixteen FH+ and 19 FH- insulin-sensitive men similar in age, peak oxygen consumption ((V) over dot(O2 peak)), and body mass index completed an exercise intervention with heart rate monitored during exercise for 7 mo. Before and after the exercise intervention, the participants underwent a physical examination and tests for glucose tolerance and exercise capacity, and muscle biopsies were taken for expression analysis. The participants attended, on average, 39 training sessions during the intervention and spent 18.8 MJ on exercise. (V) over dot(O2 peak)/kg increased by 14%, and the participants lost 1.2 kg of weight and 3 cm waist circumference. Given that the FH- group expended 61% more energy during the intervention, we used regression analysis to analyze the response in the FH+ and FH- groups separately. Exercise volume had a significant effect on (V) over dot(O2 peak), weight, and waist circumference in the FH- group, but not in the FH+ group. After exercise, expression of genes involved in metabolism, oxidative phosphorylation, and cellular respiration increased more in the FH- compared with the FH+ group. This suggests that healthy, insulin-sensitive FH+ and FH- participants with similar age, (V) over dot(O2 peak), and body mass index may respond differently to an exercise intervention. The FH+ background might limit muscle adaptation to exercise, which may contribute to the increased susceptibility to type 2 diabetes in FH+ individuals.
  •  
7.
  • Elgzyri, Targ, et al. (författare)
  • First-degree relatives of type 2 diabetic patients have reduced expression of genes involved in fatty acid metabolism in skeletal muscle
  • 2012
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 97:7, s. E1332-E1337
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: First-degree relatives of patients with type 2 diabetes (FH+) have been shown to have decreased energy expenditure and decreased expression of mitochondrial genes in skeletal muscle. In previous studies, it has been difficult to distinguish whether mitochondrial dysfunction and differential regulation of genes are primary (genetic) or due to reduced physical activity, obesity, or other correlated factors.Objective: The aim of this study was to investigate whether mitochondrial dysfunction is a primary defect or results from an altered metabolic state.Design: We compared gene expression in skeletal muscle from 24 male subjects with FH and 26 without FH matched for age, glucose tolerance, VO2peak (peak oxygen uptake), and body mass index using microarrays. Additionally, type fiber composition, mitochondrial DNA content, and citrate synthase activity were measured. The results were followed up in an additional cohort with measurements of in vivo metabolism. Results: FH+ vs. FH- subjects showed reduced expression of mitochondrial genes (P = 2.75 x 10(-6)), particularly genes involved in fatty acid metabolism (P = 4.08 x 10(-7)), despite similar mitochondrial DNA content. Strikingly, a 70% reduced expression of the monoamine oxidase A(MAOA) gene was found in FH+ vs. FH- individuals (P = 0.0009). Down-regulation of the genes involved in fat metabolism was associated with decreased in vivo fat oxidation and increased glucose oxidation examined in an additional cohort of elderly men.Conclusions: These results suggest that genetically altered fatty acid metabolism predisposes to type 2 diabetes and propose a role for catecholamine-metabolizing enzymes like MAOA in the regulation of energy metabolism. (J Clin Endocrinol Metab 97: E1332-E1337, 2012)
  •  
8.
  •  
9.
  • Keildson, Sarah, et al. (författare)
  • Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity.
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an integrative approach in which genetic variation, gene expression, and clinical phenotypes are assessed in relevant tissues may help functionally characterize the contribution of genetics to disease susceptibility. We sought to identify genetic variation influencing skeletal muscle gene expression (expression quantitative trait loci [eQTLs]) as well as expression associated with measures of insulin sensitivity. We investigated associations of 3,799,401 genetic variants in expression of >7,000 genes from three cohorts (n = 104). We identified 287 genes with cis-acting eQTLs (false discovery rate [FDR] <5%; P < 1.96 × 10(-5)) and 49 expression-insulin sensitivity phenotype associations (i.e., fasting insulin, homeostasis model assessment-insulin resistance, and BMI) (FDR <5%; P = 1.34 × 10(-4)). One of these associations, fasting insulin/phosphofructokinase (PFKM), overlaps with an eQTL. Furthermore, the expression of PFKM, a rate-limiting enzyme in glycolysis, was nominally associated with glucose uptake in skeletal muscle (P = 0.026; n = 42) and overexpressed (Bonferroni-corrected P = 0.03) in skeletal muscle of patients with T2D (n = 102) compared with normoglycemic controls (n = 87). The PFKM eQTL (rs4547172; P = 7.69 × 10(-6)) was nominally associated with glucose uptake, glucose oxidation rate, intramuscular triglyceride content, and metabolic flexibility (P = 0.016-0.048; n = 178). We explored eQTL results using published data from genome-wide association studies (DIAGRAM and MAGIC), and a proxy for the PFKM eQTL (rs11168327; r(2) = 0.75) was nominally associated with T2D (DIAGRAM P = 2.7 × 10(-3)). Taken together, our analysis highlights PFKM as a potential regulator of skeletal muscle insulin sensitivity.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy